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Abstract

Group-fair learning methods typically seek to ensure that
some measure of prediction efficacy for (often historically)
disadvantaged minority groups is comparable to that for the
majority of the population. When a principal seeks to adopt a
group-fair approach to replace another, more conventional ap-
proach, the principal may face opposition from those who feel
that they have been disadvantaged as a result of the switch,
and this, in turn, may deter adoption. We propose to mitigate
this concern by ensuring that a group-fair model is also pop-
ular, in the sense that it yields a preferred distribution over
outcomes compared with the conventional model for a major-
ity of the target population. First, we show that state of the art
fair learning approaches are often unpopular in this sense. We
then present several efficient algorithms for postprocessing an
existing group-fair learning scheme to improve its popularity
while retaining fairness. Through extensive experiments, we
demonstrate that the proposed postprocessing approaches are
highly effective.

1 Introduction
Increasing adoption of machine learning approaches in high-
stakes domains, such as healthcare and social assistance,
has led to increased scrutiny of their impact on vulnerable
groups. A number of studies demonstrating the disparate
impact of automation on such groups (Citron and Pasquale
2014; Angwin et al. 2016; Dastin 2018; Lee 2018; Koenecke
et al. 2020) has motivated an extensive literature that aims at
achieving group fairness of machine learning (Kearns et al.
2018; Agarwal et al. 2018; Pleiss et al. 2017; Hardt, Price,
and Srebro 2016; Chouldechova and Roth 2018; Mehrabi
et al. 2021; Barocas, Hardt, and Narayanan 2017; Angwin
et al. 2016; Dwork et al. 2012) by imposing an explicit con-
straint that prediction efficacy (which can be measured in
many different ways) is similar across groups. However, a
principal contemplating a change from a conventional, and
potentially biased, prediction model to a group-fair approach
must contend with the perception that such a switch could
inadvertently harm many individuals in the process of im-
proving fairness (for example, making them less likely to
receive a scarce resource such as a welfare benefit or ad-
mission to a college). Such perceptions could make any
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change from the status quo contentious and, consequently,
less likely. Our central question is whether it is possible to
make group-fair classifiers sufficiently popular—reducing
the prevalence of realized or perceived harm—so as to make
their adoption less contested.

We model the principal’s problem as a comparison be-
tween a conventional approach fC and a group-fair approach
fF , with the principal considering a switch from the former
to the latter. Both algorithms select a subset of individuals
from a target population to obtain a particular desirable out-
come (e.g., a resource, such as admission to a college). We
examine popularity in this context through the lens of pref-
erences of individuals in a target population over selection
outcomes (which we can encode as positive outcomes of bi-
nary classification): an individual weakly prefers fF to fC
if the probability of being selected is not lower under the
former than under the latter. Popularity of a group-fair ap-
proach fF then amounts to ensuring that a given fraction
(e.g., majority) of a target population prefers fF to fC .

To illustrate the relationship between fairness, accuracy,
and popularity, consider the following example. Let G1 and
G0 have four and two members respectively, with true la-
bels ⟨1, 1, 1, 1⟩ and ⟨0, 0⟩. A randomized conventional clas-
sifier fC , predicts each member of G1 to be positive with
probability 0.75 and each member of G0 to be positive with
probability 0.25. Under demographic parity fairness, G1 is
advantaged as this group has a positive rate 0.5 greater than
that of G0. Consider two choices for a fair model. fF1

pre-
dicts members of G1 to be positive with probability 0.75
and members of G0 to be positive with probability 0.55. fF2

predicts one member of G1 to be positive with probability
1, and the others with probability 2

3 ; it predicts one member
of G0 to be positive with probability 1 and the other with
probability 0.1. Note that both models have identical accu-
racy and unfairness, namely .65 and .2 respectively. How-
ever, fF1

has not decreased the score of any agent in the
population; all six prefer fF1

at least as much as the original
fC . In contrast, fF2

has decreased the scores of three agents
from G1 and one agent from G0; only two agents prefer fF2

at least as much as fC . This example illustrates that popular-
ity should be viewed as a different axis than either accuracy
or fairness, and there may be space to innovate by enabling
popularity comparisons among fair(er) models.

We start this paper by asking an empirical question: Do



typical group-fair classification approaches yield models
that are, in fact, unpopular in the sense above? We demon-
strate that they are: in experiments on several standard
datasets, more than half the target population can strictly
prefer the conventional scheme to several prominent group-
fair learning methods. Given that the group-fair approaches
have significant motivation and momentum behind them, in-
stead of designing an entirely new approach to finding pop-
ular and fair classifier, we ask whether it is possible to mini-
mally postprocess the output of a group-fair classifier in or-
der to achieve some target popularity while maintaining a
high level of fairness. We answer this question in the af-
firmative. Specifically, we describe two approaches to effi-
ciently postprocess the outputs from a given group-fair clas-
sifier in order to boost its popularity. The first approach
formalizes the problem as a minimal change of outcome
probabilities over the target population to guarantee a tar-
get level of fairness and popularity. We show that this prob-
lem can be solved in polynomial time. Our second approach
involves a form of regularized empirical risk minimization
with fairness and popularity constraints. This approach re-
lies on partitioning prediction scores into a set of quantiles,
and we show that, in general, the problem is strongly NP-
Hard. However, we also show that if the number of quan-
tiles is constant, this problem can be solved in polynomial
time. Our methods are applicable in both the classification
and scarce resource allocation settings, and allow a model
designer to directly control the level of popularity and fair-
ness.

In summary, our contributions are:
1. We propose the notion of popularity of group-fair classi-

fiers and allocation schemes, measuring the fraction of a
population that is weakly better off when switching from
a conventional to a fair learning scheme.

2. We demonstrate the degree to which state of the art
group-fair approaches are unpopular compared to their
conventional counterparts.

3. We introduce two postprocessing algorithms which allow
a principal to directly control the popularity of a given
fair model, while maintaining good fairness properties.
The first post-processing technique, dubbed DOS (Direct
Outcome Shift), is polynomial time solvable for both de-
terministic and randomized classifiers, and can also be
applied to the scarce resource allocation setting. The sec-
ond technique, k-QLS (k-Quantile Lottery Shift), works
by grouping agents into k quantiles (where k is chosen by
the model designer), and running lotteries on each quan-
tile. k-QLS is polynomial time solvable for deterministic
classifiers. While we show that k-QLS is NP-hard in the
randomized case, it becomes tractable for constant k, as
would be standard in practice.

4. We empirically demonstrate that the proposed postpro-
cessing techniques can achieve high levels of popularity
and fairness with minimal impact on prediction accuracy.

Related Work: Our work is broadly related to the field
of algorithmic group fairness which is concerned with both
defining what it means for a model to be fair, as well as oper-
ationalizing these definitions to produce fair models (Hardt,

Price, and Srebro 2016; Pleiss et al. 2017; Feldman et al.
2015; Dwork et al. 2012; Agarwal et al. 2018; Kearns et al.
2018; Jang, Shi, and Wang 2021; Kusner et al. 2017). In par-
ticular our algorithms work through postprocessing, a com-
mon technique for for achieving fairness (Pleiss et al. 2017;
Hardt, Price, and Srebro 2016; Kamiran, Karim, and Zhang
2012; Canetti et al. 2019; Lohia et al. 2019; Jang, Shi, and
Wang 2021). In these works, the scores or decisions of a con-
ventional classifier are modified in order to achieve fairness.
Most post processing techniques for fairness work through
“inclusion/exclusion” systems where a potentially random-
ized procedure is uniformly applied across groups, e.g. ran-
dom selection of group-specific thresholds (Hardt, Price, and
Srebro 2016; Jang, Shi, and Wang 2021), or randomly se-
lecting agents from one group to receive positive classifica-
tion with constant probability (Pleiss et al. 2017). Our post-
processing techniques, while concerned not exclusively with
fairness, follow a similar inclusion/exclusion system.

More generally, randomized prediction methods are com-
mon in prior literature. In some cases, randomization is in-
herently desirable, for example, to explore or correct ex-
isting bias in domains such as hiring (Berger et al. 2020;
Tassier and Menczer 2008; Hong and Page 2004) or lend-
ing (Karlan and Zinman 2010a,b). In other settings, the aim
is to increase model robustness (Pinot et al. 2019; Salman
et al. 2019), or to achieve better trade-offs between model
performance and fairness, as is common in many group-fair
classification approaches (Agarwal et al. 2018; Kearns et al.
2018; Pleiss et al. 2017).

Several recent papers look at the potential negative conse-
quences of applying group fairness (Liu et al. 2018; Zhang
et al. 2020; Corbett-Davies and Goel 2018; Kasy and Abebe
2021; Ben-Porat, Sandomirskiy, and Tennenholtz 2019). In
particular (Liu et al. 2018; Ben-Porat, Sandomirskiy, and
Tennenholtz 2019) demonstrate that specific types of group
equity can be decreased by the use of fair algorithms. Others
have merged notions of welfare and fairness (Hu and Chen
2020; Cousins 2021; Chen and Hooker 2021). Both the no-
tion of popularity, as well as our proposed techniques for
satisfying popularity and fairness, differ from these lines of
work in that popularity casts welfare in terms of the fraction
of a population which prefers a fair model compared with a
fairness-agnostic model. While the idea of agent preference
over models has received some recent attention (Ustun, Liu,
and Parkes 2019) (which aims to classify a population using
multiple models such that each agent prefers their assigned
model over all others), popularity in the context of group fair
learning has remained unexplored thus far.

2 Preliminaries
We begin by formalizing our models of conventional and
fair learning, as well as our definition of popularity. Let
D = (X, Y,G) be a dataset of n examples where the
ith example (xi, yi, gi) consists of features xi ∈ X ⊂ Rd,
binary labels yi ∈ {0, 1} and binary group membership
gi ∈ {0, 1}. We assume throughout that the positive label
y = 1 corresponds to the preferred outcome, such as being
selected to receive a valuable resource (e.g., college admis-
sion). Consider two learning schemes, say C and F , where



C is a conventional learning scheme, designed to minimize
some fairness-agnostic objective, and F is a fair learning
scheme, designed to achieve a desired level of fairness be-
tween groups. Then, C solves a problem of the form:

fC ∈ arg min
f∈HC

LC

(
f,X, Y

)
(1)

i.e., choosing an optimal model fC from the hypothesis class
HC with respect to the loss LC . However, we do not require
that fC is the result of strict error minimization, only that it
maps X to {0, 1}. In the context of conventional learning,
the objective LC and learning scheme C may have exoge-
nous considerations aside from error minimization, such as
robustness or interoperability.

We further assume that the learned classifier is of the type
that produces a score function h : X → [0, 1] which is used
to induce the classification f(X). Most classifiers used in
practice yield such score functions (e.g., SVM, Logistic Re-
gression, Neural Nets, Decision Trees, etc.). We study both
deterministic and randomized classifiers in this framework.
While deterministic predictions are most common, random-
ization can offer flexibility that can play a useful role both
in achieving fairness (Dwork et al. 2012; Kearns et al. 2018)
and robustness (Pinot et al. 2019; Li and Vorobeychik 2015;
Salman et al. 2019; Vorobeychik and Li 2014). A determin-
istic classifier f can be thought of as a threshold on scores
from h, i.e., f(x) = I

[
h(x) ≥ θ

]
for threshold θ. A random-

ized classifier f , in turn, can be viewed as a Bernoulli ran-
dom variable with a mean given by h, i.e., E[f(x)] = h(x).

In addition to the classification setting above in which,
in principle, anyone can be selected (i.e., assigned a posi-
tive outcome y = 1), we consider scarce resource allocation
(henceforth simply allocation). In the allocation setting, un-
like the classification setting, the model designer is limited
in the number of positive predictions—that is, the number
of individuals that can be selected. Specifically, the score
function h is used to allocated k < n homogeneous, in-
divisible, goods among a population of n agents. This fol-
lows a well-established paradigm of allocating scarce re-
sources among individuals using a score function learned
on a binary prediction task (Kube, Das, and Fowler 2019).
Let Ii(X, h, k) ∈ {0, 1} indicate allocation of a resource to
agent i when score function h is applied to a population X
and there are k resources. Similar to the classification set-
ting, the allocation function I can be deterministic or ran-
domized. In the case of deterministic allocation, Ii is ob-
tained directly from the set of scores h(X), e.g., allocating
resources to the k highest scoring individuals. In random-
ized allocation, Ii is a Bernoulli random variable, but unlike
in the classification setting, Ii may have an arbitrary joint
relationship with allocation decisions made for other agents,
e.g., sampling without replacement weighted by h(X).

Let M(f(X), Y ; g) be an efficacy metric computed with
respect to group membership g ∈ {0, 1} (for example,
false positive rate (FPR) or error rate (ERR)). Define group
disparity U(f,D) = |M(f(X), Y ; 1)−M(f(X), Y ; 0)|,
i.e., the difference in efficacy between two groups. Then the
group-fair learning scheme F solves a problem of the form

fF = arg min
f∈HF

LF

(
f,X, Y

)
s.t. U(f,D) ≤ β. (2)

i.e., fF is an optimal group-fair model from hypothesis class
HF , with fairness captured by the constraint that group
disparity U is bounded by β. We refer to the fair learn-
ing scheme and model fF as β-fair. Note that when re-
sources are scarce, fairness is defined over allocation deci-
sions Ii(X, h, k), not over scores h; an example of a fairness
objective would be selection rate parity of Ii(X, h, k) be-
tween groups. Our analysis that follows applies to the broad
class of additive efficacy metrics in both the classification
and allocation settings.
Definition 2.1. (Additive Efficacy Metric): An efficacy met-
ric M is additive if for any population (X, Y,G),

M
(
f(X), Y ; g

)
=

∑
y∈{0,1}

∑
i∈Gg :
yi=y

f(xi)c
(g)
y,1 + (1− f(xi))c

(g)
y,0

for some c
(g)
y,0, c

(g)
y,1 ∈ [0, 1]. In the case of scarce resources

f(xi) is interchangeable with Ii(X, h, k). In the case of
randomized models, f(xi) is replaced with E[f(xi)] or
E[Ii(X, h, k)].

In an additive efficacy metric, the coefficients c
(g)
y,0, c

(g)
y,1

give the respective “costs” of classifying an example from
group Gg , with true label y, as negative or positive, respec-
tively. Thus, unfairness U is given as the difference in the to-
tal efficacy cost between groups. Additive metrics are widely
studied in the literature and include metrics such as error
rate (ER), positive (or selection) rate (PR), false positive rate
(FPR), and true positive rate (TPR). As an example, in the
case of PR fairness c

(g)
y,1 = 1/|Gg| and c

(g)
y,0 = 0 for each

y, g ∈ {0, 1}.
We consider the situation in which a conventional learn-

ing scheme C is initially in place, and a principal considers
a switch from C to a group-fair scheme F , and wishes to
ensure that F is γ-popular in the sense that it is preferred to
C by at least a fraction γ of the target population. We for-
malize preference over learning schemes by assuming that
an individual prefers schemes which yield higher expected
outcomes for them, that is, they prefer being selected to not
being selected, as in Hardt, Price, and Srebro (2016). Thus,
an individual i with features xi prefers F over C if

fC(xi) ≤ fF (xi) or IC,i(X, h, k) ≤ IF,i(X, h, k) (3)

when decisions are deterministic and

E
[
fC(xi)

]
≤ E

[
fF (xi)

]
or (4)

E
[
IC,i(X, h, k)

]
≤ E

[
IF,i(X, h, k)

]
when decisions are stochastic.

Note that our analysis is in the space of outcomes, rather
than scores. Consequently, if decisions are deterministic, ei-
ther in classification or allocation settings, agents only have
a definitive preference over scores produced by h if this
is consequential to outcomes (e.g., pushing them above or
below θ). In the stochastic case, on the other hand, agents
prefer the classifier or allocation scheme which yields the
higher expected outcome (that is, higher probability of be-
ing selected).

Armed with this model of individual preference, we now
define what it means for F to be popular.



Definition 2.2. (γ-popularity): A learning scheme F is said
to be γ-popular with respect to a population (X, Y,G) and
conventional scheme C, if Condition (3) (for deterministic
models), or Condition (4) (for randomized models), holds
for at least γ|X| individuals.

Popularity thus captures the fraction γ of a population
which is weakly better off (or, equivalently, not made worse)
from the use of F over C. Similar to the concept of β-
fairness, in which a model designer can specify the desired
level of fairness β, the definition of popularity, as well as our
postprocessing techniques described later, allow the model
designer to directly specify, and control, the desired level of
popularity. Note that we do not capture the degree to which
individuals are made better or worse off as a result of switch-
ing from C to F , but only whether they are.

As mentioned earlier, our setting is one of a concrete
choice by a principal between a particular conventional ap-
proach C and a particular group-fair approach F . This re-
flects a decision by the principal to switch from C—which
is currently deployed—to F in order to reduce impact to a
disadvantaged group (or groups). Of course, different pairs
of C and F (e.g., using different loss functions, different
learning algorithms, etc) would yield different judgments
about popularity of F , which is, by construction, relative
to C. Consequently, these will also yield different decisions
about improving popularity of F based on algorithms we
discuss below. Nevertheless, our framework generalizes im-
mediately to a setting in which neither C nor F are fixed,
and there is uncertain about either, or both. In such a case,
we treat uncertainty about either C or F as a distribution
over approaches and, consequently, over outcomes induced.
This can then be immediately captured within our frame-
work dealing with randomized schemes, and all definitions
above, and technical results below, go through unchanged.

Our goal is to investigate the following three questions:
1) Are common group-fair learning techniques popular? 2)
For a given γ and β, can we compute β-fair and γ-popular
decisions in polynomial time? 3) What is the nature of the
tradeoff between popularity, fairness, and accuracy?

3 Improving Popularity through
Postprocessing

We consider two approaches to minimally postprocess a β-
fair scheme fF such that the resulting decisions also be-
come γ-popular, for exogenously specified β and γ: 1) di-
rect outcome shift (DOS) and 2) k-quantile lottery shift (k-
QLS). Postprocessing is performed in a transductive setting,
in which the populations’ features (X, G) (and possibly also
labels Y ) are known in advance. Throughout, we use fP to
refer to either approach we propose that combines both pop-
ularity and group fairness.

Direct Outcome Shift (DOS) DOS-based postprocess-
ing arises from solving the problem of finding a minimal
perturbation to the agents’ outcomes that achieves both fair-
ness and popularity, e.g. Program 5 for randomized classifi-
cation. For a target population with feature vectors X, we
shift individuals’ outcomes fF (X) or expected outcomes
E[fF (X)] by a perturbation vector p. For deterministic de-

cisions, p ∈ {−1, 0, 1}n, while for stochastic decisions
p ∈ [−1, 1]n. The optimization goal in either case is to
minimize ∥p∥q for some ℓq-norm (q ∈ {1, 2,∞}) such
that the final decisions, whether they involve predictions
(fF (X)+p, or E[fF (X)]+p) or allocations (I(X, h, k)+p,
or E

[
I(X, h, k)

]
+ p) are both β-fair and γ-popular. Since

DOS does not use knowledge of true labels Y , it can be ap-
plied directly at prediction time to a population of individ-
uals. However, this also means that it can only be applied
when the measure of fairness is independent of the true la-
bels Y (for example, ensuring equality of positive rates).

k-Quantile Lottery Shift (k-QLS) Another option for
creating popular and fair classifiers is to directly mini-
mize a loss function regularized by the distance of the
fair-and-popular classifier from the fair classifier (distance
is measured on predictions at training time), e.g. Program
12 for randomized classifiers. k-QLS-based postprocessing
achieves this goal by partitioning scores hF (X) for a pop-
ulation X into k bins (based on quantiles). The goal is then
to compute probabilities p

(g)
ℓ for each bin ℓ and group g,

which minimize empirical risk and change to each agent’s
outcome, while achieving γ-popularity and β-fairness. This
is done at training time. Then at prediction time, we take
all agents in group g with scores in bin ℓ and run a lottery,
where each agent is classified as 1 with probability p

(g)
ℓ , and

0 otherwise. Since k-QLS is applied on the training dataset,
it also allows us to use fairness metrics that depend on labels
Y ; for this reason k-QLS is not used in allocation, where Y
is typically unknown.

k-QLS is motivated by works such as (Hardt, Price, and
Srebro 2016; Pleiss et al. 2017; Kamiran, Karim, and Zhang
2012; Canetti et al. 2019; Lohia et al. 2019) which aim
to postprocess a conventional model to achieve β-fairness
by running an “inclusion/exclusion” lottery on groups of
agents. However, k-QLS differs from these approaches:
shifting all outcomes of a group, even in a randomized man-
ner, is too granular to achieve γ-popularity, and thus we shift
outcomes within k quantiles. In Section C.3 of the Supple-
ment we demonstrate the poor performance of group level
shifts compared the higher precision shifts of both the quan-
tile shifts of k-QLS and the individual shifts of DOS.

Remark 3.1. Achieving γ-popularity and β-fairness may be
infeasible in general. However, for common efficacy metrics
(e.g., PR, FPR, and TPR), doing so is always possible. Both
DOS and k-QLS have a feasible solution for any level of
γ-popularity and β-fairness, for both randomized and de-
terministic models.

3.1 Postprocessing for Deterministic Models
When the conventional model fC , and β-fair model fF
are deterministic, the optimization problems defined for
both the DOS approach and the k-QLS approach can be
efficiently solved for any U defined by an additive efficacy
metric M. In both cases, since model decisions are binary,
post processing amounts to finding some set of agents
negatively classified by fC , which minimally impact loss
while not violating fairness, when positively classified.



Theorem 3.2 (Informal). When classifiers produce deter-
ministic outcomes and U is defined by an additive fairness
metric, the optimization problems for both DOS and k-QLS
can be solved in polynomial time.

We defer the formal statement of this claim, and a full dis-
cussion of deterministic postprocessing, to the Supplement.

3.2 DOS for Randomized Classification
Next we investigate popularity as it relates to randomized
classifiers. Recall that in the case of randomized classi-
fiers DOS aims to minimally shift the expected outcomes
of fF on a population (X, G), with unknown true labels
Y , to produce the γ-popular β-fair model, which we de-
note by fP , where E

[
fP (xi)

]
= E

[
fF (xi)

]
+ pi, and

0 ≤ E
[
fP (xi)

]
≤ 1. Thus, DOS aims to solve the follow-

ing optimization problem:

min
p∈[−1,1]n

∥p∥q (5)

s.t. U
(
E
[
fF (X)

]
+ p, G

)
≤ β (6)

1

n

n∑
i=1

I
[
E
[
fC(xi)

]
≤ E

[
fF (xi)

]
+ pi

]
≥ γ (7)

for q ∈ {1, 2,∞}. A key challenge is that the popularity
constraint (7) is discrete and non-convex, amounting to a
combinatorial problem of identifying a subset of γ|X| in-
dividuals who prefer the fP to its conventional counterpart
fC . Nevertheless, this problem can be solved in polynomial
time.

Algorithm 1: (Randomized DOS) Postprocessing technique
for converting a β-fair model fF into a γ-popular β-fair
model fP .
Input: population: (X, Y,G), β-fair model: fF , conven-
tional model: fC , popularity: γ
Result: weights p s.t. fP = fF + p is γ-popular and β-
fair

1: Gg := {i : gi = g} s.t.
E
[
fC(xi)

]
− E

[
fF (xi)

]
≤ E

[
fC(xi+1)

]
− E

[
fF (xi+1)

]
2: m := ⌈γn⌉
3: for i = 1 to m do
4: Si =

{
E
[
fC(xj)

]
≤ E

[
fF (xj)

]
+ pj : j ∈ G1[: i]

}
∪
{
E
[
fC(xj)

]
≤ E

[
fF (xj)

]
+pj : j ∈ G0[: m−i]

}
5: build Program 5 and replace Constraint 7 with Si

6: pi = solution to the modified program
7: end for

return p∗ = argmini ∥pi∥

Theorem 3.3. Let fC and fF be respectively a conventional
and β-fair randomized classifier. Let U be derived from an
additive efficacy metric M which is independent of Y (e.g.,
PR). Then for q ∈ {1, 2,∞} Program 5 can be solved in
time Θ(γnT ) (where Θ(T ) is the time required to solve a
linear program or semi-definite program, as appropriate) by
Algorithm 1, which returns a γ-popular, β-fair model fP .

Proof Sketch. Recall that E[f(x)] = h(x), an agent i
prefers fP to fC if hC(xi) ≤ hP (xi) = hF (xi)+ pi, and if
this holds for at least m = γn agents then fP is γ-popular.
In the case of DOS postprocessing, if a specific set of m con-
straints is required to hold, rather than any m constraints, the
problem is tractable as it is a linear program (q = 1,∞) or
semi-definite program (q = 2).

To order the set of possible constraints such that only a
polynomial number must be examined, we make use of the
following observations: for any two agents i, j ∈ Gg , 1.)
since U is additive and independent of Y , unfairness is in-
variant under any change to pi, pj which preserves pi + pj ,
and 2.) if hC(xi) − hF (xi) ≥ hC(xj) − hF (xj) then
hC(xi) ≤ hF (xi)+pi iff hC(xj) ≤ hF (xj)+pi. Thus, for
any solution p where hC(xi) ≤ hF (xi)+ pi, but hC(xj) >
hF (xj) + pj , permuting pi and pj does not affect loss, fair-
ness, or popularity, (when permutation is infeasible, shifting
the maximum allowed weight from pi to pj is sufficient).
Since the problem is invariant under such permutations, we
need only consider imposing hC(xi) ≤ hF (xi) + pi if
hC(xj) ≤ hF (xj) + pj is already imposed.

Thus, each Gg can be ordered such that for i, j ∈ Gg , if
j < i then hC(xj)− hF (xj) ≤ hC(xi)− hF (xi). Since
the intragroup decisions are made trivial via this ordering,
only the intergroup decisions remain. Since at least m popu-
larity constraints need to hold, and there are m ways to select
exactly m total constraints between the two groups while
preserving the intragroup ordering, there are only m sets of
constraints that need investigation. Each set corresponds to
solving either a LP or SDP which takes time Θ(T ) to solve.
The specific running time of each program type is outlined
in the Supplement. Thus the total running time of DOS is
Θ(γnT ).

3.3 DOS for Randomized Resource Allocation
Next we turn our attention to resource allocation, in which
k < n equally desirable resources are allocated to a pop-
ulation of size n. Recall that the randomized allocation
scheme given by I(X, G) assigns resources to agents where
E
[
Ii(X, G)

]
∈ [0, 1] gives the probability that agent i re-

ceives a resource with allocation performed over popula-
tion (X, G). For notational convenience, we use I(i) =
E
[
Ii(X, G)

]
to represent the probability that agent i re-

ceives the resources and suppress the expectation and im-
plicit dependence on the population (X, G).

Scarce resource allocation is particularly well suited for
DOS as true labels (with respect to the allocation decision)
are typically unknown. In this case, DOS postprocessing is
given by,

min
p∈[−1,1]n

∥p∥q (8)

s.t.
n∑

i=1

IF (i) + pi ≤ k (9)

U
(
IF + p, G

)
≤ β (10)

1

n

n∑
i=1

I
[
IC(i) ≤ IF (i) + pi

]
≥ γ (11)



We now show that DOS in resource allocation settings
remains tractable.
Theorem 3.4. Let IC and IF be a conventional and β-fair
allocation scheme, respectively, and U be derived from an
additive efficacy metric M which is independent of Y (e.g.,
PR). Then for q ∈ {1, 2,∞} Program 8 can be solved in
time Θ(γnT ) by Algorithm 1 which returns a γ-popular, β-
fair allocation if one exists.

Proof Sketch. In the case of scarce resources, agents can
again be ordered in an identical fashion to the classification
setting (Theorem 3.3). Note that for any solution p and any
i, j ∈ Gg , the resource constraint

∑n
i=1 IF (i)+pi ≤ k is in-

variant to any change in pi, pj , which preserves pi+pj . Thus
a similar argument to Theorem 3.3, with a few caveats relat-
ing to infeasible solutions, holds. Specifically, this yields γn
programs (either LPs or SDPs), each of which is solvable in
time Θ(T ). Thus DOS post processing for resource alloca-
tion can be computed in time Θ(γnT ).

3.4 k-QLS for Randomized Classification
Finally, we explore k-QLS postprocessing for randomized
classifiers. k-QLS creates k intervals by the quantiles of
hF (X), where k is chosen by the model designer. Specifi-
cally, let ρℓ be the maximum score associated with quantile
ℓ of hF (X). Each interval is given as Iℓ = [ρℓ−1, ρℓ], with
the understanding that ρ0 = 0 and ρk = 1. On each inter-
val Iℓ, and for each group g, a parameter p(g)ℓ is learned. At
prediction time, E

[
fP

(
xi

)]
= p

(gi)
ℓ for i s.t. hF (xi) ∈ Iℓ, .

Finding the optimal lottery probabilities can formulated
as the following optimization problem:

min
p∈[0,1]2k

L
(
fP ,X, Y

)
+ λ∥fF (X)− fP (X)∥qq (12)

s.t. U
(
fP , D

)
≤ β (13)

1

n

n∑
i=1

I
[
fC(xi) ≤ fP (xi, gi)

]
≥ γ, (14)

where L is expected training error. As was the case for DOS
postprocessing with randomized classifiers, the constraint
that γ fraction of the population prefers fP over fC is dis-
crete and non-convex. Indeed, unlike DOS, the k-QLS prob-
lem becomes strongly NP-hard.
Theorem 3.5. Postprocessing to achieve γ-popularity and
β-fairness with k-QLS (i.e., solving Program 12) is strongly
NP-hard when models are randomized, and U is derived
from an additive efficacy metric.

We defer this proof to Section B.3 of the Supplement.

The intractability stems entirely from the model de-
signer’s ability to choose the number of quantiles k: if k
is fixed, the problem can be solved in polynomial time as
shown in the following theorem. In practice, we can fix k to
be small, thus obtaining a tractable algorithm.
Theorem 3.6. Let fC and fF be a conventional and a β-fair
randomized classifier respectively. Let U be derived from
an additive efficacy metric M. Then for a fixed number of

quantiles k, Program 12 for q = {1, 2,∞} can be solved in
polynomial time, thus obtaining γ-popular β-fair decisions.

Proof. As was the case for DOS applied to random-
ized classifiers, k-QLS applied to randomized classifiers
is tractable if a specific set of m = γn agents is re-
quired to prefer fP , rather than any m agents. When the
number of intervals is constant it is straightforward to in-
duce an ordering on agents which explores only a polyno-
mial number of constraint sets. Specifically, let G(g,ℓ) =
{i ∈ [n] : gi = g and hF (xi) ∈ Iℓ}. Then agents in each
Gg can be ordered by the magnitude of p(g)ℓ required such
that they prefer fP to fC . Order Gg such that for i, j ∈ Gg

if i < j then hC(xj) ≤ hC(xi), then if agent i ∈ Gg prefers
fP to fC , so does every j ≤ i. There are 2k such sets, each
containing at most n/k agents. Since the popularity over each
Gg can be parameterized by the identity of the agent with the
largest value of hC(x) who prefers fP , there are no more
than (γn)k unique values under this parameterization, and
thus no more than (γn)k sets of constraints need be exam-
ined; each examination requires only polynomial time.

4 Experiments
In this section we empirically investigate the relationship be-
tween popularity and fairness, and evaluate the efficacy of
the proposed postprocessing algorithms. Each experiment
is conducted on four data sets: 1) the Recidivism dataset,
2) the Income dataset, 3) the Community Crime dataset,
and 4) the Law School dataset. In each dataset features can
be continuous or categorical; each label is binary and de-
fined such that 1 is always the more desirable outcome, e.g.
in the Recidivism dataset y = 1 indicates not reoffending.
A specific description of the label is given in the Supple-
ment. Group membership is defined by race for Community
Crime and Law School, and by gender for Recidivism and
Income; either feature is assumed to be binary. All other sen-
sitive features, such as age, are removed from the dataset.
We consider three fair learning schemes: the Reductions al-
gorithm (Agarwal et al. 2018), the CalEqOdds algorithm
(Pleiss et al. 2017), the KDE algorithm (Cho, Hwang, and
Suh 2020). Results for the latter two are provided in Section
C of the supplement.

Popularity of Current Fair Learning Schemes: We be-
gin by considering popularity of group-fair classifiers. The
fractions of the overall population, and subgroup population,
which prefer the fair classifier are shown in Figure 1, where
fairness is achieved using the Reductions method.

Not surprisingly, we see that in all instances the disad-
vantaged group G0 prefers fF at far higher rates than G1.
With the exception of the CalEqOdds algorithm (which
achieves fairness via group specific score shifts, resulting
in far stronger group-level preference over classifiers), re-
sults for other methods are similar; these are provided in the
supplement. Overall, randomized fair classifiers frequently
have popularity of less than 50% . On the other hand, fair
deterministic classifiers are relatively popular in most cases.

In either case, however, postprocessing can be used to fur-
ther boost popularity of group-fair methods.



Figure 1: Fraction of each population or group preferring fF
over fC for randomized classifiers (top) and deterministic
classifiers (bottom), when fF is learned via the Reductions
algorithm.

Figure 2: Model performance and unfairness on test data
(3-fold average) for deterministic models with γ = 0.95
(top) and randomized models with γ = 0.8 (bottom). The
conventional classifier fC , fair classifier fF (learned via re-
ductions), and the fair popular classifier fP (learned via our
postprocessing technique), each using Logistic Regression.

Postprocessing for Fairness and Popularity: Next we
examine the efficacy of our proposed postprocessing tech-
niques DOS and k-QLS (k=10). When classifiers are deter-
ministic, performance is measured using balanced accuracy
(balanced w.r.t. Y ). When classifiers are randomized, perfor-
mance is measured using ROC-AUC, calculated over model
scores (i.e., expected outcomes).

Remark 4.1. Both k-QLS and DOS may require solving
a large number of LPs or SDPs, which may be expensive.
However, both methods can be efficiently implemented in
practice by either solving the programs in parallel, trimming
down the number of programs with heuristics, or replacing
all programs with a single integer program. The latter being
the most efficient, typically finishing in under 60 seconds.
Further details on these methods, and exact running times,
are provided in Section C.3 of the Supplement.

Figure 2 shows that both k-QLS and DOS are able to
achieve high levels of γ-popularity and β-fairness with lit-

Figure 3: Expected False Positive Rate (FPR) of k-QLS, on
randomized classifiers,as a function of γ.

tle degradation in performance. In particular, deterministic
classifiers (due to their higher natural popularity) are able to
achieve greater levels of popularity compared to randomized
models, with similar levels of degradation to performance.
We observe similar results for other combinations of dataset,
efficacy metric, and classifier type (Section C of the supple-
ment).

Finally, we consider the extent to which popularity may
skew model efficacy. In particular, as the popularity coeffi-
cient γ increases, a larger fraction of the population is guar-
anteed to have scores from fP , which are at least as large
as those from fC . Since popularity constraints ensure that
agents scores do not decrease, achieving higher levels of
popularity (i.e., higher γ) also incentivize the resulting fP to
maintain false positive errors made by fC . Thus one would
expect FPR to increase with γ. This phenomenon is shown
in Figure 3, which demonstrates that as γ increases, so does
expected FPR. Although the expected FPRs vary between
datasets and fairness definitions, the rate of increase is rela-
tively similar across instances.

In Section C of the supplement, we further explore the
tradeoffs between error, fairness, and popularity via the
Pareto frontiers of these values. Similar to the classic results
involving fairness and accuracy, we find that there is a fun-
damental tradeoff between model accuracy and popularity.

5 Conclusion
The deployment of group-fair classifiers, in place of con-
ventional classifiers, may result large fractions of a popula-
tion perceiving that they are made worse off by the change.
We introduce the notion of popularity, which captures the
fraction of agents preferring one classifier over another, and
propose two postprocessing techniques (DOS and k-QLS)
for achieving popularity while retaining good fairness prop-
erties. Both techniques provide efficient solutions for both
deterministic and randomized classifiers. We note that while
in practice postprocessing can achieve popularity and fair-
ness with minimal degradation to model performance, re-
quiring higher levels of popularity can actually entrench any
false positive errors made by the conventional model. Conse-
quently, application of the proposed techniques need to care-
fully analyze the tradeoffs not merely between popularity,
group fairness, and overall accuracy, but also with specific
measures of error, particularly the false positive rate.
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Supplement
A Postprocessing for Deterministic Classifiers

A.1 DOS for Deterministic Classification
Recall that DOS post processing, given conventional model fC , β-fair model fF and population (X, G), aims to select a vector
p ∈ {−1, 0, 1}n such that the classifier fP (xi) = fF (xi) + pi is both γ-popular and β-fair, while minimizing ∥p∥q . For
deterministic DOS we study q = 1 as each 0 ≤ q < ∞ are equivalent, namely in that each yields the Hamming distance
between fP and fF , and q = ∞ is simply an indicator of fP ̸= fF . For deterministic classifiers DOS can be formulated as

min
p∈{−1,0,1}n

∥p∥q (15)

s.t. U
(
fF + p, D

)
≤ β (16)

1

n

n∑
i=1

I
[
fC(xi) ≤ fF (xi) + pi

]
≥ γ (17)

0 ≤ fF (xi) + pi ≤ 1 (18)

Objective 15 can be solved by Algorithm 3. Since decisions are binary, DOS is effectively selecting some minimum number
of decisions from fF (X) to flip. In the deterministic case, DOS postprocessing is not technically difficult, but is illustrative
of some key ideas used in other, more complex, cases. Specifically, the selection of which agents to flip decisions for is made
straightforward by two observations. First, popularity increases only when flipping the decisions of agents with fF (x) = 0 and
fC(x) = 1. Second, agents within a group are exchangeable with respect to fairness in the sense that for i, j ∈ Gg , either setting
of fP (xi) = 1− fP (xj) results in identical fairness since U is derived from an additive metric. Combining these observations
implies that no optimal solution can have pi = 1 and pj = −1 for i, j ∈ Gg . Moreover, an optimal solution will only choose
to flip agents to negative classification, i.e. pi = −1, if doing so is required to rebalance fairness. Thus, with respect to flipping
decisions, agents are equivalent up to group membership, I[fF (x) < fC(x)], and I[fF (x) = 1]; implying DOS reduces to
deciding whether to increase or decrease positive classifications on each Gg .

Using these facts, it is straightforward to alternate between groups and either positively classify an agent from S1 =
{i : fF (xi) < fC(xi)}, or negatively classify an agent from S2 = {i : fF (xi) = 1}. When positively classifying two agents
from different groups has a cancellation-like affect on unfairness (e.g. PR), DOS will never negatively classify an agent with
fF (x) = 1. In such cases fP is a Pareto-impairment from fF with respect to agent preference.
Theorem A.1. Let fC and fF be a conventional and β-fair classifier respectively, both of which are deterministic. Let U be
derived from an additive efficacy metric M which is independent of Y (e.g., PR). Then DOS, given by Program 15, returns a
γ-popular β-fair model fP and can be solved by Algorithm 3 in time Θ(n).

Proof. Let m = ⌈γn⌉, i.e., m is the number of popularity constraints that must be satisfied. Each such constraint involves a
single variable pi ∈ {−1, 0, 1} and thus is independent from any other popularity constraint. Moreover since unfairness U is
additive, it can be expressed as

U
(
fF (X) + p, G

)
=

∣∣M(
fF (X) + p : g = 1

)
−M

(
fF (X) + p : g = 0)

∣∣
=
∣∣ ∑
i∈G1

c
(1)
1

(
fF (xi) + pi

)
+ c

(1)
0

(
1−

(
fF (xi) + pi

))
−

∑
j∈G0

c
(0)
1

(
fF (xj) + pj

)
+ c

(0)
0

(
1−

(
fF (xj) + pj

))∣∣
=

∣∣∣∣( ∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj

)
+

( ∑
i∈G1

c
(1)
1 fF (xi) + c

(1)
0

(
1− f(xi)

)
−

∑
j∈G0

c
(0)
1 fF (xj)− c

(0)
0

(
1− fF (xj)

))∣∣∣∣
for scalars c(g)1 , c

(g)
0 which give the respective cost of positively or negatively classifying an agent from group Gg . Note that

u :=
∑
i∈G1

c
(1)
1 fF (xi) + c

(1)
0

(
1− f(xi)

)
−

∑
j∈G0

c
(0)
1 fF (xj)− c

(0)
0

(
1− fF (xj)

)
is constant for fixed fF and (X, Y,G). Then the fairness constraint can be expressed as

U
(
fF (X) + p, G

)
≤ β

⇐⇒ −β − u ≤
∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj ≤ β − u (19)

Due to the additive nature of this fairness term, each member of group g is exchangeable, meaning that for any two agents
i1, i2 ∈ Gg , fairness is invariant under any alteration to pi1 , pi2 which preserves the value of pi1 + pi2 . More specifically, for
any i1, i2 ∈ Gg and any feasible solution p with pi1 = −1 and pi2 = 1, let p′ be defined by p′k = pk for all k ̸= i1, i2 and



p′i1 = p′i2 = 0. Then p′ is both a feasible solution and has ∥p′∥ ≤ ∥p∥. The latter part of which is straightforward; to see
the former we need only consider the popularity constraints since fairness is satisfied by the feasibility of p and pi1 + pi2 =
p′i1 + p′i2 = 0. Although it may be the case that fC(xi) > fF (xi) + p′i = fF (xi) + pi − 1, i.e., agent i no longer prefers fF , it
must be the case that fC(xj) ≤ 1 ≤ fF (xi) + pj + 1 = fF (xi) + p′j , i.e., agent j prefers fF .

Since agents from the same group are exchangeable and no optimal solution has both pi1 = −1 and pi2 = 1 for i1, i2 ∈ Gg ,
the optimal score shift p can be found by alternating between groups and greedily assigning either pi = 1 or pi = −1, as
outlined by Algorithm 3. To see the optimality of this greedy selection procedure, let U(fF (X) + p, G) = M(fF (X) + p :
g = 1)−M(fF (X)+p : g = 1), i.e. the function U is equivalent to U without absolute value. With respect to greedy selection,
only two cases need be considered: 1.) sign(c(1)1 − c

(1)
0 ) = sign(c(0)1 − c

(0)
0 ) and 2.) sign(c(1)1 − c

(1)
0 ) = −sign(c(0)1 − c

(0)
0 ).

In case (1) if choosing to positively classify an agent from group G1 increases (decreases) the value of U(fF (X) + p, G)
then positively classifying an agent from group G0 decreases (increases) the value of U(fF (X) + p, G). Thus if increasing
the number of positive classifications on G0, or on G1, violates unfairness, the only way to resatisfy fairness is to increase
the number of positive classifications on the other group. In case (2) if choosing to positively classify an agent from group
G1 increases (decreases) the value of U(fF (X) + p, G) then positively classifying an agent from group G0 also increases
(decreases) the value of U(fF (X) + p, G). Thus if increasing the number of positive classifications on G0, or on G1, violates
unfairness, the only way to resatisfy fairness is to decrease the number of positive classifications on the other group.

The selection process examines at most n agents, and each decision on an agent takes constant time. Thus DOS can be solved
in time Θ(n) for deterministic classifiers.

A.2 k-QLS for Deterministic Classification

Recall that k-QLS is a postprocessing technique which, given a conventional model fC , a β-fair model fF , and a training set
D = (X, Y,G), postprocesses the predictions of fF such that they are γ-popular and β-fair. This is achieved by running a
lottery on k quantiles defined by the scores of fF , namely hF (X), the resulting model after postprocessing is refereed to as fP .
Specifically, the scores hF (X) are partitioned into k intervals in the following manner: let ρℓ be the maximum score associated
with quantile ℓ of hF (X), and let Iℓ = [ρℓ−1, ρℓ] with the understanding that ρ−1 = 0 and ρk = 1. The resulting classifier fP
makes predictions fP (x) = p

(g′)
ℓ for hF (x) ∈ Iℓ with g = g′. In the case of deterministic models, p(g

′)
ℓ ∈ {0, 1}. The optimal

β-fair γ-popular model can be found by solving:

min
p(0),p(1)∈{0,1}2k

L
(
fP , D

)
+ λ∥fP (X)− fF (X)∥qq (20)

s.t. U
(
fP , D

)
≤ β (21)

1

n

n∑
i=1

I
[
fC(xi) ≤ fP (xi, gi)

]
≥ γ (22)

where L is balanced accuracy. Unlike DOS, k-QLS does not admit a straightforward solution, but is still polynomial time
solvable. The key difference between these two techniques is that k-QLS makes decisions over sets of agents, rather than
individual agents, and each interval may contain any number of agents with any combination of true labels and predicted
outcomes under both fC and fF . Thus much of the symmetry from the DOS case is lost, however enough symmetry remains
that a dynamic programming solution can produce the optimal fP in polynomial time.

Theorem A.2. Let fC and fF be a conventional and β-fair classifier respectively, both of which are deterministic. Let U be
derived from an additive efficacy metric M (e.g. FPR). Then k-QLS, given by Program 20, returns a γ-popular and β-fair
model fP time Θ

(
γkn6

)
via dynamic programming. Moreover, when M is given by FPR, TPR, PR, or ERROR, fP can be

found in time Θ
(
γkn4

)
.

Before proving this theorem we first mention that while k-QLS admits a polynomial time solution, k-QLS can also be
transformed into a MILP and solvers such as CPLEX may be more efficient in practice since k, the number of variables, will
typically be constant (e.g., breaking scores into 10 intervals) and the program contains only two constraints (one for popularity
and one for fairness).

Proof of Theorem A.2. When post processing with k-QLS the model designer creates k intervals based on the quantiles of
hF (x) and aims to shift the scores of agents in each interval such that γ-popularity and β-fairness are achieved. Let ρℓ be the
maximum score associated with quantile ℓ of hF (X), and let Iℓ = [ρℓ−1, ρℓ] with the understanding that ρ−1 = 0.

Thus k-QLS aims to find binary vectors p(g) ∈ {0, 1}k for each group Gg , such that the model fP (x) = p
(g)
ℓ for hF (x) ∈

Iℓ, in group g is γ-popular and β-fair. Since unfairness U is given in terms of an additive efficacy metric M, the unfairness of



Algorithm 2: (Deterministic k-QLS) Postprocessing technique, learned at training time and later applied at prediction time,
for converting a deterministic β-fair model fF into γ-popular β-fair model fP .
input: population: (X, G), β-fair model: fF , score function of fF : hF , conventional model: fC , popularity: γ, quantiles k
result: Weight p ∈ {0, 1}2k of the γ-popular β-fair fP

1: ρℓ := maximum score in quantile ℓ of hF (X) ∀ℓ ∈ [k] /* partition scores hF (X) in k intervals based on quantile */
2: Iℓ = [ρℓ−1, ρℓ] ∀ℓ ∈ [k]
3: p(0),p(1) := 0
4: /* parameters indicating the effects of setting p

(g)
ℓ := 1 */

5: N
(g)
ℓ := # of agents in Gg with hf (x) ∈ Iℓ and fC(x) = 1

6: C
(g)
ℓ := increase to unfairness (without absolute value)

7: L
(g)
ℓ := increase to loss

8: /* partition each group and interval according according to effect on fairness */
9: S+ := {(g, ℓ) : 0 ≤ C

(g)
ℓ }

10: S− := {(g, ℓ) : C(g)
ℓ < 0}

11: /* loss independent on each Iℓ, and thus on S+ and S− */
12: build a knapsack-like problem over each S using weights C(g)

ℓ , N (g)
ℓ , and values L(g)

ℓ

13: /* p
(g)
ℓ corresponds to selecting item (g, ℓ) polynomial number of possibilities for each */

14: m+,m− := all possible # of agents preferring fF corresponding to solution from S+, S−
15: u+,u− := all possible values of unfairness corresponding to solution from S+, S−
16: for each m− ∈ m− and each u− ∈ u− do
17: dynamically compute optimal solution from S− using exactly m− agents and u− unfairness
18: for each m+ ∈ m+ and u+ ∈ u+ do
19: dynamically compute optimal solution from S+ using exactly m+ agents and u+ unfairness.
20: if solution from S− and S+ is feasible then
21: save the combined solution
22: end if
23: end for
24: end forreturn p corresponding to solution with the lowest loss



fP over population D = (X, Y,G) can be expressed as

U
(
fP , D

)
=

∣∣M(
fP (X, g), Y : g = 1

)
−M

(
fP (X, g), Y : g = 0

)∣∣
=

∣∣∣∣ k∑
ℓ=1

∑
y∈{0,1}

( ∑
i∈G1

hF (xi)∈Iℓ

c
(1)
y,1p

(1)
ℓ

(
1− |y − yi|

)
+ c

(1)
y,0

(
1− p

(1)
ℓ

)(
1− |y − yi|

)

−
∑
j∈G0

hF (xi)∈Iℓ

c
(0)
y,1p

(0)
ℓ

(
1− |y − yi|

)
+ c

(0)
y,0

(
1− p

(0)
ℓ

)(
1− |y − yi|

))∣∣∣∣

=

∣∣∣∣ k∑
ℓ=1

(
p
(1)
ℓ

∑
y∈{0,1}

(c
(1)
y,1 − c

(1)
y,0)

∑
i∈G1

hF (xi)∈Iℓ

(
1− |y − yi|

)
− p

(0)
ℓ

∑
y∈{0,1}

(c
(0)
y,1 − c

(0)
y,0)

∑
i∈G0

hF (xi)∈Iℓ

(
1− |y − yi|

)

+
∑

y∈{0,1}

∑
i∈G1:

hF (xi)∈Iℓ

c
(1)
y,0

(
1− |y − yi|

)
−

∑
y∈{0,1}

∑
i∈G0:

hF (xi)∈Iℓ

c
(0)
y,0

(
1− |y − yi|

))∣∣∣∣

for scalar costs c(g)y,1, c
(g)
y,0. Note that

u :=

k∑
ℓ=1

∑
y∈{0,1}

∑
i∈G1:

hF (xi)∈Iℓ

c
(1)
y,0

(
1− |y − yi|

)
−

∑
y∈{0,1}

∑
i∈G0:

hF (xi)∈Iℓ

c
(0)
y,0

(
1− |y − yi|

)
and each

C
(g)
ℓ := (1− 2g)

∑
y∈{0,1}

(c
(g)
y,1 − c

(g)
y,0)

∑
i∈Gg

hF (xi)∈Iℓ

(
1− |y − yi|

)
are constants. Thus the fairness constraint on fP can be expressed as

U
(
fP , D) ≤ β

⇐⇒ −β − u ≤
k∑

ℓ=1

(
2(1)− 1

)
p
(1)
ℓ C

(1)
ℓ −

(
2(0)− 1

)
p
(0)
ℓ C

(0)
ℓ ≤ β − u (23)

⇐⇒ −β − u ≤
k∑

ℓ=1

p
(1)
ℓ C

(1)
ℓ + p

(0)
ℓ C

(0)
ℓ ≤ β − u (24)

Thus, unfairness of fP is given by a linear constraint on the vectors p(1) and p(0).
Similar to the unfairness term, the optimization objective

L(fP ,X, Y,G) + λ∥fF (X)− fP (X)∥qq

=

k∑
ℓ

∑
g∈{0,1}

( ∑
i∈Gg

hF (xi)∈Iℓ

(1− yi)p
(g)
ℓ + yi(1− p

(g)
ℓ )

)
+

∑
g∈{0,1}

∑
i∈Gg

hF (xi)∈Iℓ

λ
∣∣fF (xi)− p

(g)
ℓ

∣∣q
can, by shifting and rescaling, be equivalently expressed as

k∑
ℓ

∑
g∈{0,1}

p
(g)
ℓ

( ∑
i∈Gg

hF (xi)∈Iℓ

(1− yi − λfF (xi))

)
(25)



due to the fact that fF , y, and p are binary; each term

L
(g)
ℓ :=

∑
i∈Gg

hF (xi)∈Iℓ

(1− yi − λfF (xi))

is constant. Lastly, let
N

(g)
ℓ =

∣∣{i ∈ Gg : fC(xi) = 0 and hF (xi) ∈ Iℓ
}∣∣

Thus the optimization of k-QLS can be is equivalently formulated as,

min
p(0),p(1)∈{0,1}k

k∑
ℓ=1

∑
g∈{0,1}

p
(g)
ℓ L

(g)
ℓ (26)

s.t. − β − u ≤
k∑

ℓ=1

p
(1)
ℓ C

(1)
ℓ + p

(0)
ℓ C

(0)
ℓ ≤ β − u (27)

k∑
ℓ=1

∑
g∈{0,1}

p
(g)
ℓ N

(g)
ℓ ≤

⌊
(1− γ)

(
1− PR(fC)

)
n
⌋

(28)

The popularity term
∑k

ℓ=1

∑
g∈{0,1} p

(g)
ℓ N

(g)
ℓ can take on at most ⌈n(1−PR(fC))⌉ different values. In the fairness constraint,

each term
∑k

ℓ=1 p
(g)
ℓ C

(g)
ℓ can take on at most 1/2|Gg|

(
|Gg|+ 1

)
unique values since each can be written as

k∑
ℓ=1

p
(g)
ℓ C

(g)
ℓ =

∑
y∈{0,1}

ay(c
(g)
y,1 − c

(g)
y,0) for some a0, a1 ∈ N with a0 + a1 ≤ |Gg|

Next we create two index sets which keep track of which groups g and intervals ℓ have positive and negative coefficients C(g)
ℓ .

Let S+ = {(g, ℓ) : C(g)
ℓ ≥ 0} and S− = {(g, ℓ) : C(g)

ℓ ≥ 1}. Thus S+ and S− indicate whether p(g)ℓ will increase or decrease
the value of Equation 27. Specifically, suppose that for each (g, ℓ) ∈ S−, r(g)ℓ is a solution. Let R =

∑
(g,ℓ)∈S−

rℓ(g)p
(g)
ℓ , and

θ =
⌊
(1− γ)

(
1− PR(fC)

)
n
⌋
−
∑

(g,ℓ)∈S−
r
(g)
ℓ N

(g)
ℓ . Then the problem reduces to solving

min
∑

g,ℓ∈S+

p
(g)
ℓ L

(g)
ℓ

s.t. − β − u−R ≤
∑

g,ℓ∈S+

p
(g)
ℓ C

(g)
ℓ ≤ β − u−R

∑
g,ℓ

p
(g)
ℓ N

(g)
ℓ ≤ θ

which yields a knapsack problem with two constraints, with weights C(g)
ℓ and N

(g)
ℓ . Since there are at most k decision variables,∑

g,ℓ p
(g)
ℓ N

(g)
ℓ can take on at most γn unique feasible values, and

∑
g,ℓ∈S+

p
(g)
ℓ C

(g)
ℓ can take on at most n2 unique values. This

problem is therefore solvable in Θ(kγn3) time. Moreover, since any solution set generated from S− can produce at most n2

values of R and n values of θ, any configuration of variables from S− produce γn3 unique subproblems, each of which can
be solved in time Θ(kγn3). Thus, Algorithm 2 solves k-QLS in time Θ

(
γkn6

)
for general additive metrics. Moreover for PR,

TPR, FPR, and ER, each
∑

g,ℓ∈S+
p
(g)
ℓ C

(g)
ℓ can take on at most n unique values (rather than n2), implying there are only n2

unique subproblems, each requiring Θ(kγn2) time to solve, thus k-QLS is solvable in time Θ
(
γkn4

)
.

B Randomized Classifiers
B.1 DOS for Randomized Classification

Theorem (3.3). Let fC and fF be respectively a conventional and β-fair randomized classifier. Let U be derived from an
additive efficacy metric M which is independent of Y (e.g., PR). Then for q ∈ {1, 2,∞} Program 5 can be solved in time
Θ(γn3) by Algorithm 1 which returns a γ-popular, β-fair model fP .



Algorithm 3: (Deterministic DOS) Postprocessing technique, applied directly at prediction time, for converting a deterministic
β-fair model fF into γ-popular β-fair model fP .
inputpopulation: (X, G), β-fair model: fF , conventional model: fC , popularity: γ result:Weight vector p ∈ {0, 1}n s.t.
fP = fF + p is γ-popular and β-fair

1: p := 0
2: /* positively classifying agents from different groups has a cancelling effect with respect to unfairness */
3: if sign(c(1)1 − c

(1)
0 ) = sign(c(0)0 − c

(0)
0 ) then

4: Sg := {i ∈ Gg : fF (xi) < fC(xi)}
5: a := # of agents that prefer fF
6: /* less than γn agent prefer fF or unfairness is violated */
7: while a < γn or U

(
fF (X) + p, G

)
> β do

8: i0, i1 := S0[0], S1[0]
9: /* positively classify the agents resulting in the lowest increase to unfairness */

10: if p[i0] := 1 increases unfairness less than p[i1] := 1 then
11: g := 0
12: else
13: g := 1
14: end if
15: p[ig] := 1
16: Sg.delete(ig)
17: a += 1
18: end while
19: return p
20: /* positively classifying agents from different groups has a monotonic effect with respect to unfairness */
21: else if sign(c(1)1 − c

(1)
0 ) = −sign(c(0)1 − c

(0)
0 ) then

22: /* increase positives on one group and decrease on the other (for each group) */
23: for g′ ∈ {0, 1} do
24: Sg′ := {i ∈ Gg : fF (xi) < fC(xi)}/* all agents from group Gg′ who prefer fC */
25: /* all agents in G(1−g′) positively classified under fF , sorted by fC */
26: A(1−g′) := {i ∈ G(1−g′) : fF (xi) == 1} s.t. fC(xi) > fC(xi+1)
27: a := # of agents preferring fF
28: /* less than γn agents prefer fF or unfairness is violated */
29: while a < γn or U

(
fF (X) + p, G

)
> β do

30: /* if unfairness is violated, attempt to fix it */
31: if U(fF (X) + p, G) > β then
32: i, j = Sg′ [0], A(1−g′)[0]

33: if unfairness decreased by p(g′)[i] := 1 then
34: p(g′)[i] := 1
35: else
36: p(1−g′)[j] := −1
37: end if
38: /* if unfairness is not violated, increase the positive rate on Gg′ */
39: else
40: p(g′)[i] := 1
41: end if
42: update a, (+1 or -1)
43: end while
44: end for
45: end ifreturn p



Algorithm 4: Algorithm to solve programs associated with DOS in the randomized classification setting, when given S, a
specific set of γn that must prefer fP to fC .
input:population: (X, Y,G), β-fair model: fF , conventional model: fC , γn : S
result:Weight vector p s.t. fP = fF + p

1: p = 0
2: m := γn
3: δ := hF (X) /* lower bound on perturbation to agents’ scores */
4: for i ∈ S do
5: pi := max

(
0, hC(xi)− hF (xi)

)
; /* minimum score increase for i to prefer fP */

6: δi := hC(xi)− hF (xi); /* lowest value of pi such that i prefers fP */
7: end for
8: /* check “direction” in which fairness is violated */
9: if

∣∣M(
fF (X) + p, Y ; g = 1

)
−M

(
fF (X) + p, Y ; g = 0

)
< −β then

10: /* sg=1 (sg=-1) indicates increasing (decreasing) scores on Gg */

11: sg := sign
(
(1− 2g)(c

(g)
1 − c

(g)
0 )

)
for g ∈ {0, 1}

12: else if
∣∣M(

fF (X) + p, Y ; g = 1
)
−M

(
fF (X) + p, Y ; g = 0

)
> β then

13: sg := sign
(
(1− 2g)(c

(g)
0 − c

(g)
1 )

)
for g ∈ {0, 1}

14: end if
15: while U

(
fF + p,D

)
> β do

16: /* agents from each group whose scores can still be perturbed */
17: if sg = 1 then
18: Gg := {i ∈ Gg : hF (xi) + pi < 1}
19: /* maximum additional perturbation to Gg which is feasible */

20: εg := min

({
1− hF (xi) : i ∈ Gg

}
∪
{β−U

(
fF+p,D

)
(c

(g)
1 −c

(g)
0 )|Gg|

})
21: else
22: Gg := {i ∈ Gg : δi < hF (xi) + pi}
23: /* maximum additional perturbation to Gg which is feasible */

24: εg := min

({
δi : i ∈ Gg

}
∪
{β−U

(
fF+p,D

)
(c

(g)
0 −c

(g)
1 )|Gg|

})
25: end if
26: /* check if increasing scores by ε0, ε1 would fix fairness */
27: p′ := p
28: p′[Gg]+ = εg for g ∈ {0, 1}
29: if U

(
fF + p′,D

)
< β then

30: /* in the case that fairness is achieved, εg may be too large */
31: decrease magnitude of each εg s.t. U

(
fF + p′,D

)
= β and

∑
i∈G0

∣∣pi + ε0|q =
∑

i∈G1

∣∣pi + ε1|q
32: return p′

33: end if
34: pg := p[Gg] + εg for g ∈ {0, 1}
35: /* ratio of “fairness repair” to increase in loss */

36: g∗ := argming∈{0,1}
( εg|Gg|sg(c(g)1 −c

(g)
0 )

∥pg∥q−∥p∥q

)
/* where a

0
:= ∞ for a ̸= 0 and 0

0
:= 0 */

37: p := pg∗

38: end while
39: return p



Proof of Theorem 3.3. Recall that E
[
fF (x)

]
= hF (x) and E

[
fC(x)

]
= hC(x), i.e., the expected outcome of each classifier

is given by is respective score function. For notational convince we use we use hF and hC throughout this proof. Program 5
is non-convex with respect to p due to the constraint that γ-fraction of the population needs to prefer fF over fC , namely that
m = γn of the constraints

hC(xi) ≤ hF (xi) + pi

need to be satisfied. However, note that if instead of needing to satisfy any m constraints, we needed to satisfy a specific set of
m constraints, say

S =
{
hC(xi1) ≤ hF (xi1) + pi1 , . . . , hC(xim) ≤ hF (xim) + pim

}
,

then the resulting program would be trivial to solve as it amounts to ℓq-norm minimization subject to linear constraints. Thus,
if the optimal set of popularity constraints can be found efficiently, the problem is polynomial time solvable.

To find this set of constraints, we make use of the fact that the metric M defining U is additive, specifically the fact that U
can be expressed in terms of scalars c(g)1 , c

(g)
0 ∈ [0, 1] which give the respective cost of positively or negatively classifying an

agent from group Gg . That is, given a perturbation p ∈ [−1, 1]n and fair model fF , unfairness can be written as,

U
(
hF (X) + p, G

)
=
∣∣M(

hF (X) + p : g = 1
)
−M

(
hF (X) + p : g = 0)

∣∣
=

∣∣∣∣ ∑
i∈G1

c
(1)
1

(
hF (xi) + pi

)
+ c

(1)
0

(
1−

(
hF (xi) + pi

))
−

∑
j∈G0

c
(0)
1

(
hF (xj) + pj

)
+ c

(0)
0

(
1−

(
hF (xj) + pj

))∣∣∣∣
=

∣∣∣∣( ∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj

)

+

( ∑
i∈G1

c
(1)
1 hF (xi) + c

(1)
0

(
1− hF (xi)

)
−

∑
j∈G0

c
(0)
1 hF (xj)− c

(0)
0

(
1− hF (xj)

))∣∣∣∣
Since c

(g)
0 , c(g)1 , and hF (X) are constant

u :=
∑
i∈G1

c
(1)
1 hF (xi) + c

(1)
0

(
1− hF (xi)

)
−

∑
j∈G0

c
(0)
1 hF (xj)− c

(0)
0

(
1− hF (xj)

)
is also constant. Thus the fairness constraint can be expressed as

U
(
hF (X) + p, G

)
≤ β

⇐⇒ −β − u ≤
∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj ≤ β − u. (29)

With this formulation of unfairness, we see that for any two agents i1, i2 from the same group, increasing or decreasing the score
of i1 has the same effect on unfairness as equivalently increasing or decreasing the score of i2. More specifically, let i1, i2 ∈ Gg ,
then for any potential solution p, let p′ be any other potential solution with p′j = p′j if j ̸= i1, i2, and pi1 + pi2 = p′i1 + p′i2 .
Both p and p′ have equivalent fairness. This observation can be used to order both groups in terms of increase in pi required
for agent i to prefer fP over fC .

To induce this ordering, consider any two agents i1, i2 ∈ Gg with hC(xi1) − hF (xi1) ≤ hC(xi2) − hF (xi2), i.e., i1
requires at least as large a score shift as i2 to prefer fF over fC . Let S1 be any set of m popularity constraints which include
hC(xi1) ≤ hF (xi1) + pi1 , but not hC(xi2) ≤ hF (xi2) + pi2 , and let

S2 =

(
S1 \ {hC(xi1) ≤ hF (xi1) + pi1}

)
∪ {hC(xi2) ≤ hF (xi2) + pi2}.

Let p1 and p2 be the solutions corresponding to Program 5 with constraint set S1 and S2 respectively. Then ∥p2∥q ≤ ∥p1∥q .
That is, choosing to enforce that i2 prefers fF over fC is at least as good as choosing to enforce the preference of i1 for fF over
fC . To see this, consider the the scores of agents i1 and i2 under solution p1, i.e. fF (xi1) + p1,i1 and fF (xi2) + p1,i2 . Suppose
that scores p1,i1 and p1,i2 are permuted creating p′

1, i.e. p′1,i1 = p1,i2 and p′1,i2 = p1,i1 . Then p1 and p′
1, have equal unfairness.

Moreover, by the construction of S1 and S2 it must be the case that

p1,i1 ≥ fC(xi1)− fF (xi1) ≥ fC(xi2)− fF (xi2),

implying that p′
1 constitutes to a feasible solution to the program corresponding to popularity constraints S2, i.e. ∥p′

1∥q ≥
∥p2∥q . Since permuting elements of p1 does not affect the value of any ℓq-norm, it must be the case that ∥p1∥q = ∥p′

1∥q ≥



∥p2∥q . Thus if groups are ordered such that for i ∈ Gg we have hC(xi) − hF (xi) < hC(xi+1) − hF (xi+1), then one need
only consider adding the constraint hC(xi+1) ≤ hF (xi+1) + pi+1 if the constraint hC(xi) ≤ hF (xi) + pi has already been
selected.

Suppose G1 and G0 are ordered in such a manner. Then, to decide which constraints to include, it suffices to determine the
intergroup decisions since the intragroup decisions are then determined by the agent order. Since there are at most m = γn
unique sets of constraints which preserve orderings within groups, and each set of constraints corresponds to a polynomial time
solvable program, Program 5 is solvable in time Θ(γnT ) where Θ(T ) is the time required to solve a single program (either
a linear program or a semidefinite program). Moreover, each corresponding program (namely Program 5 with Constraint 7
replaced by S) can be solved by Algorithm 4. At high level this algorithm takes the agents in S (i.e., the set of agents which
should prefer fP ) and sets each pi to the minimum value, in terms of magnitude, such that i ∈ S prefers fP . If fairness is not
violated by this change to pi is optimal. In the case when fairness is violated, the algorithm iteratively increases (or decreases)
elements of p such that unfairness is strictly decreasing while minimally increasing ∥p∥q .

To see the optimality and running time of Algorithm 4, consider the first step, namely pi = min
(
0, hC(xi) − hF (xi)

)
for

all i ∈ S. This setting of p causes all agents in S to prefer fP and is clearly the minimum perturbation to do so. Therefore, if
fairness is not violated, then p is optimal, and the running time is Θ(γn).

In the case that fairness is violated, the scores on groups G0 and G1 need to be further altered. In particular, let

U(fp,X, G) = M(fP (X); g = 1)−M(fP (X); g = 0)

i.e., U is U without absolute value. The rate of change in U with respect to increasing pi is given by c
(gi)
1 −c

(gi)
0 for each i ∈ [n].

Therefore, if U(fp,X, G) < −β, unfairness can only be fixed by increasing scores on each group Gg with c
(g)
1 − c

(g)
0 > 0 and

decreasing scores on each group GG with c
(g)
1 − c

(g)
0 < 0. On the other hand, if U(fp,X, G) > β, then unfairness can only be

fixed by increasing scores on each group Gg with c
(g)
1 − c

(g)
0 < 0 and decreasing scores on each group GG with c

(g)
1 − c

(g)
0 > 0.

When increasing scores on Gg the only constraint is that hF (xi) + pi ≤ 1 for all i ∈ [n], but when decreasing scores the
constraint 0 ≤ hF (xi) + pi for all i ∈ [n] needs to be considered as well as hC(xj) ≤ hF (xj) + pj for all j ∈ S.

With respect to fairness agents from the same group are exchangeable in the sense that increasing (or decreasing) the score of
any agent in Gg has the same effect on unfairness as increasing (or decreasing) the score of any other agent in Gg . Specifically,
for i, j ∈ Gg unfairness is invariant to any change in pi, pj which preservers pi + pj . Therefore, ignoring popularity, no
optimal solution will set pi < 0 and pj > 0. Moreover, when pi + pj must be preserved, the terms |pi| + |pj |, p2i + p2j and
max

(
|pi|, |pj |

)
are all minimized when pi = pj =

pi+pj

2 . Therefore for q ∈ {1, 2,∞}, if one where to increase |pi|, say
by value ε, then pi + sign(pi)ε is no better than pj +

sign(pi)ε
|Ggi

| for each j ∈ Ggi . That is, ignoring popularity, it is optimal to
uniformly distribute the weight of p over each group.

When considering both popularity constraints, as well as the need for perturbations to constitute valid probabilities, it then
optimal to uniformly increase the weight on all agents i ∈ Gg such that neither of these constraints is violated. This value is
given as εg at each iteration. Let p be the solution produced by Algorithm 4 and let p∗ be any optimal solution. Since both are
solutions hF (X)+p and hF (X)+p∗ are both β-fair, and for each j ∈ S hF (xj)+pj ≥ hC(xj) and hF (xj)+p∗j ≥ hC(xj).
If ∥p∥q ≤ ∥p∗∥q , then p is also an optimal solution. Assume, by way of contradiction, that ∥p∥q > ∥p∗∥q , and consider two
cases: 1.) U(hF (X) + p∗, G) < β and 2.) U(hF (X) + p∗, G) = β.

In case (1), if q = 1, 2 then i /∈ S implies p∗i = 0, and if q = ∞ then i /∈ S implies |p∗i | ≤ maxj∈S

(
|p∗j |

)
. To see this,

let q = 1, 2 and j /∈ S. Suppose that |p∗i | > 0 and u = β − U(hF (X) + p∗, G). Then |p∗i | can be decreased by at least
u

|c(gi)1 −c
(gi)
0 |

without violating fairness. Doing so results in a strict decrease to ∥p∗∥q . When q = ∞ and identical argument

holds for |p∗i | > maxj∈S

(
|p∗j |

)
.

In case (2), we order each group according to the maximum feasible perturbation to each agent, w.l.o.g. we show this
for G0 when c

(0)
1 − c

(0)
0 > 0 (a symmetric argument holds in other cases). For i ∈ G0 let δi = −hF (xi) if i /∈ S and

δj = hC(xi) − hF (xi) if i ∈ S. Order G0 such that for i, j ∈ G0, i < j implies δi ≥ δj . Suppose that δj ≤ p∗i ≤ p∗j ≤ 0.

Then any solution which has pi =
p∗
i +p∗

j

2 (such as p′) is both feasible and at least as optimal as p∗.
At each iteration the sets Gg represent the set of agents whose scores can feasibly still be perturbed, i.e. further perturbing

will not push the score below 0, above 1, or violate a constraint in S. The entries of p corresponding to either G0 or G1 are
updated by ε0 or ε1 respectively. By the definition of εg , at least one agent is removed from either G0 or G1. There are at most
n agents between the two sets, and thus at most n iterations are run. Each iteration takes at most time time Θ(n), since εg is
computed as the minimum over at most n choices and at most n entries of p are updated. Therefore Algorithm 4 runs in time
Θ(n2).

Thus, since Algorithm 4 may be used to solve the instances of Program 5 arising in Algorithm 1 in time Θ(n2), DOS can be
solved by Algorithm 1 in time Θ(γn3).



B.2 DOS for Randomized Resource Allocation
In practice, when sampling using these probabilities to produce an actual allocation, an invalid solution may be obtained, i.e.
if Xi is a binary indicator of agent i receiving a resource, sampling can yield

∑n
i=1 Xi > k. Provided that the number of

resources is large enough, we can control this probability by solving for a slightly smaller bound. Suppose we instead use the
constraint

∑n
i=1 IF (i) + pi ≤ (1− ε)k for some ε ∈ [0, 1]. Then applying the Chernoff bound yields

P
( n∑

i=1

Xi > k

)
≤ exp

(
− ϵ2

2(1− ε)
k)
)
,

which, for example, implies that when k ≥ 500 and any ε ≥ 0.2 the probability of getting an invalid solution is no greater than
4× 10−6.
Theorem (3.4). Let IC and IF be, respectively, conventional and β-fair allocation schemes, and U be derived from an additive
efficacy metric M which is independent of Y (e.g., PR). Then for q ∈ {1, 2,∞} Program 8 can be solved in time Θ(γnT )
(where Θ(T ) is the time required to solve either a linear program or a semidefinite program) by Algorithm 1 which returns a
γ-popular, β-fair allocation if one exists.

Proof of Theorem 3.4. The proof of this theorem follows a similar line of reasoning to that used in Theorem 3.3, namely in that
if a specific set of m = ⌈γn⌉ popularity constraints (rather than any m popularity constraints) needed to be satisfied then the
problem is tractable. To select these m constraints efficiently, we use the ordering in Theorem 3.3. The key difference in this
case is the existence of the resource constraint

∑n
i=1 IF (i) + pi ≤ k, and thus we need only show that the ordering induced on

agents is not invalidated by the addition of this resource constraint. To see that this is indeed the case, note that each pi has the
same coefficient in this constraint, namely 1. Therefore, permuting any pi and pj does not affect this constraint. Next consider
any two agents i1, i2 ∈ Gg with IC(i1)− IF (i1) ≤ IC(i2)− IF (i2), i.e., i1 requires at least as large a score shift as i2 to prefer
IF over IC . Let S1 be any set of m popularity constraints which includes IC(i1) ≤ IF (i1)+pi1 but not IC(i2) ≤ IF (i2)+pi2 ,
and let

S2 =

(
S1 \ {IC(i1) ≤ IF (i1) + pi1}

)
∪ {IC(i2) ≤ IF (i2) + pi2}.

Let p1 and p2 be the solutions corresponding to Program 8 with constraint set S1 and S2 respectively. By identical reasoning
to the classification case, if both programs are feasible, then ∥p2∥q ≤ ∥p1∥q , since score permutations within a group do not
affect the resource constraint, objective, or unfairness. Moreover, since IC(i1) − IF (i1) ≥ IC(i2) − IF (i2), if the program
corresponding to S1 is feasible, then the program corresponding to S2 must also be feasible, and thus p1 can be transformed
into a feasible solution to S2 via score permutation. Similarly, in the case when S2 is infeasible, S1 must also be infeasible.

Since adding constraints can never cause an infeasible program to become feasible, if infeasible programs are considered
to have solution value ∞, then including agent i2 in place of i1 will never result in an increase in the objective value. Thus
each group can again be ordered by IC(i) − IF (i). Iterating over each of the the m possible choices of constraints from G0

and G1 which preserve this intragroup ranking, will return an optimal solution if one exists, or determine that the problem has
no solution. Hence, Algorithm 1 solves Program 8. Since at most m = γn such matchings are examined and each matching
corresponds to a program which requires θ(T ) time to solve Algorithm 1 runs in time Θ(γnT ).

B.3 k-QLS
Theorem B.1 (3.5). Postprocessing to achieve γ-popularity β-fairness with k-QLS (i.e., solving Program 12) is strongly NP-
hard when models are randomized, U is derived from an additive fairness metric, and the number of quantiles k is determined
by the input.

Proof of Theorem 3.5. We reduce from the NP-hard problem exact m knapsack (EmKP), which is strongly NP-hard when
coefficients are rational, which consists of n items, each with weight and value wi, vi ∈ Q≥0, a capacity W ∈ Q≥0, and a
target m. The objective is to select exactly m items such that total value is maximized and the weight limit is not exceeded.
To transform an instance of EmKP into an instance of k-QLS postprocessing, we map each item to an interval where the item
weight corresponds to unfairness, item value corresponds to loss, and popularity is achieved when exactly m intervals have
nonzero values of p(g)ℓ . Specifically, for each item i create two agents i0, i1 such that for agent i0, gi0 = yi0 = 0, and for i1,
gi1 = yi1 = 1. For the conventional and fair score function hC = E[fC ], hF = E[fF ], let

hC(xi0) =
wi +maxj∈[n](wj)

2maxj∈[n](wj)
and hF (xi0) =

vi − 3W
(
1 + 2hC(xi0)

)
maxj∈[n](vj)

4WhC(xi0)maxj∈[n](vj)
(30)

and,
hC(xi1) = hF (xi1) = 1.

In Equation 30 note that 1/2 ≤ hC(xi0) ≤ 1 and as such 0 ≤ hF (xi0) ≤ 1. The particular values of both variables is selected
to ensure that both hC and hF correspond to valid probabilities, and so that the loss and fairness constraint cancel out to yield



a weight constraint over wi and a maximize over vi. Let the efficacy costs be defined as c(0)0,1 = c
(1)
0,1 = 1 and all others are 0,

i.e. false positive fairness. Lastly let the popularity coefficient be γ = n+m
2n , maximum unfairness be β = W

2maxj∈[n](wj)
+ m

2 ,
the number of intervals be k = 2n, and the regularization coefficient be λ = 1/2. Note that each of the k intervals then contains
exactly one agent.

The key idea is that the construction of the groups, and choice of fairness definition, causes any optimal solution to positively
classify all agents in G1 since gj = yj = 1 for all j ∈ G1. Doing so yields 0 loss on G1 and makes no contribution to unfairness
(since fairness is defined by FPR). Moreover, ignoring popularity, any optimal solution will negatively classify all agents in G0

since gj = yj = 0 for all j ∈ G0 and doing so yields 0 loss on G0 and makes no false positive predictions. When adding the
popularity constraint, i.e. n +m of the 2n agents must have a an expected outcome under hF which is at least as large as the
expected outcome under hC , the decisions on G1 will remain invariant, but an optimal solution will select the lowest possible
number of agents in G0 (namely m) minimally increasing loss and not violating unfairness, and classify those agents positively
with probability hC(xj) (i.e., their expected outcome under the conventional classifier). By the construction of the hC and hF

in Equation 30, these m agents will correspond to most profitable m items which do not exceed the weight limit.

To see why this is the case we first consider the loss term on each agent j in G0 when that agent has expected outcome p
(0)
j ,

p
(0)
j (1− yj) + (1− p

(0)
j )yj + λ(hF (xj)− p

(0)
j )2

=p
(0)
j

(
1 + 1/2p

(0)
j − hF (xj)) + 1/2hF (xj)

2

since 0 ≤ hF (xj) ≤ 1, this term is monotonically increasing in p
(0)
j and is minimized at p(0)j = 0. Thus without consideration

of popularity or unfairness, the optimal solution is to set p(0)j = 0 for all j ∈ G0. Moreover, by construction of the fairness cost

coefficients c(0)0,1 = c
(1)
0,1 = 1, the fairness constraint can be written as

U(fp,X, Y,G) ≤ β

⇐⇒ −β ≤
∑
i∈G1

p
(1)
i c

(1)
yi,1

+ (1− p
(1)
i )c

(1)
yi,0

−
∑
j∈G0

p
(0)
j c

(0)
yj ,1

+ (1− p
(0)
j )c

(0)
yj ,0

≤ β

⇐⇒
∑
j∈G0

p
(0)
j c

(0)
0,1 ≤ β

since c
(0)
0,1 = 1, the left-hand side of the inequality is monotonically increasing in each p

(0)
j . Therefore, the fairness constraint

adds no incentive to increase any p
(0)
j on group 0, and thus only the popularity constraint will force p

(0)
j > 0 for some j.

Since γ2n = m+n
2n 2n = m+ n number of agents need to prefer fP to fC (i.e., need p

(g)
i ≥ hC(xi)), and all n of the agents

in G1 trivially prefers fP , the popularity constraint is satisfied only when m agents from G0 prefer fP .

Note that since both the unfairness term
∑

j∈G0
p
(0)
j c

(0)
0,1 and the loss term

∑
j∈G0

p
(0)
j

(
1 + 1/2p

(0)
j − hF (xj)) + 1/2hF (xj)

2

corresponding to G0 are both monotonically increasing in each p
(0)
j , the optimal solution is to set exactly m of the n variables

p
(0)
j to hC(xj) (i.e. the lowest possible value such that agent j prefers fP to fC). Let αj ∈ {0, 1} correspond to an indicator

that p(0)j = hC(xj), then k-QLS is equivalent to

min
α

∑
j∈G0

αj

(
hC(xj)

(
1 + 1/2hC(xj)− hF (xj)) + 1/2hF (xj)

2

)
+ (1− αj)(1/2hF (xj)

2) (31)

s.t.
∑
j∈G0

αjhC(xj) ≤ β (32)

∑
j∈G0

αj = m. (33)



Simplifying the objective and substituting the expressions for hC(xj) and hF (xj) yields

min
α

∑
j∈G0

αj

(
hC(xj)

(
1 + 1/2hC(xj)− hF (xj)) + 1/2hF (xj)

2

)
+ (1− αj)(1/2hF (xj)

2)

⇐⇒ min
α

∑
j∈G0

αj

(
hC(xj)

(
1 + 1/2hC(xj)− hF (xj))

)
+ 1/2hF (xj)

2

⇐⇒ min
α

∑
j∈G0

αj

(
3/4 − vj

4W maxi∈G0
(vi)

)

⇐⇒ max
α

∑
j∈G0

αj
vj

4W maxi∈G0
(vi)

−
∑
j∈G0

αj
3/4

⇐⇒ max
α

∑
j∈G0

αj
vj

4W maxi∈G0
(vi)

where the final line stems from the fact that
∑

j∈G0
= m and is thus a constant term, not affecting the optimization. Moreover,

note that the denominator 4W maxi∈G0(vi) is also constant, thus minimizing (31) is equivalent to maximizing the value of the
knapsack.

Lastly, we need only show that the fairness term is equivalent to the original capacity constraint. The fairness constraint can
be written then as ∑

j∈G0

αjhC(xj) ≤ β

⇐⇒
∑
j∈G0

αj

wi +maxj∈[n](wj)

2maxj∈[n](wj)
≤ W

2maxj∈[n](wj)
+

m

2

⇐⇒
∑
j∈G0

αj

(
wi +max

j∈[n]
(wj)

)
≤ W +mmax

j∈[n]
(wj)

⇐⇒
∑
j∈G0

αjwi ≤ W

where the last line is again due to
∑

j∈G0
αj = m. Thus the fairness constraint is satisfied if and only if the original capacity

constraint is satisfied. Thus, any solution to k-QLS which successfully minimizes loss such that unfairness is not violated and at
least m agents from G0 prefer fP can be used as an optimal solution to the original EmKP problem by simply selecting all items
j which correspond to nonzero values of p(0)j . Since EmKP is strongly NP-hard, so is k-QLS postprocessing on randomized
classifiers.

C Experiments
C.1 Relationship Between Popularity and Fairness for Standard Fair Learning Schemes
In Figure 4 the percentage of the population who prefers for fF over FC (y-axis) is shown as a function of unfairness (left) and
error (right) for three choices of fairness metric and dataset, when classifier decisions are randomized. The randomness in this
example comes not from the stochastic nature of the classifiers, but from uncertainty in the training data. Each classifier, trained
on a different down sample of the training data is deterministic. Expected classifier outcome is then given as the expectation
over all classifiers, rather than a single classifier’s predicted probability. We see that current fair learning schemes produce
popular classifiers at rates less than chance. Moreover we see that in most cases there is no clearly defined Pareto front on
which most examples sit, implying that finding a classifier which is both popular and fair may be feasible in practice.

In Figures 5, 6 we see the relative popularity of fC and fP for randomized classifiers (top) and deterministic classifiers
(bottom).

C.2 Running time of DOS and k-QLS
For DOS and k-QLS, the corresponding polynomial time solutions for randomized models may require solving large numbers
of linear programs or semidefinite programs (semidefinite programs appear only for l2-norm regularization). Despite their
polynomial time guarantees, these algorithms can sometimes be slow in practice. To deal with such cases model designers have
two options: 1.) solve the programs in parallel, since each program is independent, and 2.) frame solve the integer program
corresponding to DOS or k-QLS. In practice we find the latter to be much faster on average. For deterministic models this is
not the case since neither algorithm requires the use of program solvers.



Figure 4: Percentage of the population voting for fF (y-axis) as a function of classifier unfairness (x-axis left) and error (x-axis
right) for classifiers where randomness stems from uncertainty over the training data. This uncertainty is modeled by down-
sampling 70% of the training 50 times. Each point in the graph reports a 3-fold average for each choice of hyperparameter and
model type (20 choices of hyperparameters for Logistic Regression, Gradient Boosted Trees, and Support Vector Machines),
where an expected outcome is the average number of times, out of 50, that they are are classified as a 1.

When formulating the integer programs, recall that the polynomial time algorithms achieve their run time by efficiently
iterating over all possible sets of γn agents (out of a population of n). For each such group of γn the corresponding algorithm
solves a program in which all γn agents prefer fP (achieving unanimous preference over any subpopulation is tractable).
Without popularity constraints, each program corresponding to DOS or k-QLS is polynomial time solvable. Rather than iterating
over each potential set of constraints (for which there are γn possibilities) one could directly include the constraint,

n∑
i=1

I
[
fP (xi) >= fC(xi)] ≥ γn

Which is an integer linear constraint since fP (xi) ≥ fC(xi) is a binary variable which is linear in the decision variables of
the program. By adding this constraint the corresponding integer program can be solved directly by modern solvers. In our
experiments we solve the corresponding integer programs with CPLEX.

Recidivism Income Crime Law School
Deterministic DOS 0.001 0.001 0.001 0.001

Deterministic k-QLS 0.021 0.092 0.033 0.026
Randomized DOS 0.351 1.645 0.931 0.619

Randomized k-QLS 44.121 67.121 54.379 52.947

Table 1: Running time in seconds (rounded to three digits), of DOS and k-QLS for randomized models with γ = 0.8 and
deterministic models with γ = 0.95. For deterministic models, the polynomial time algorithms are run, for randomized model
a single integer program is run. Reported times are averaged across PR, TPR, and FPR fairness as well as all base model types
(Logistic Regression, Gradient Boosted Trees, Support Vector Machine, and Neural Networks). Since DOS and k-QLS are
postprocessing methods, reported running times do not include running time of the base models.

C.3 Performance of DOS and k-QLS
Figures 8, 9 show the accuracy and unfairness of the conventional model fC , β-fair model fF , and the γ-popular β-fair model
fP (learned via k-QLS) when model outcomes are deterministic. Figures 10, 10 show model AUC and unfairness of these model



Figure 5: Fraction of each population or group voting for fF over fC for randomized classifiers (top) and deterministic classi-
fiers (bottom), when fF is learned via the Reductions algorithm and each classifier uses Gradient Boosted Trees.

Figure 6: Fraction of each population or group voting for fF over fC for randomized classifiers (top) and deterministic classi-
fiers (bottom), when fF is learned via the Reductions algorithm and each classifier uses SVMs.



Figure 7: Fraction of each population or group voting for fF over fC for randomized classifiers (top) and deterministic clas-
sifiers (bottom), when fF is learned via the EqOdds algorithm and each classifier uses Logistic Regression. Due to the way in
which EqOdds achieves fairness, the entirety of one group will always prefer fF , since fF = fC on that group.

Figure 8: Model performance and unfairness on test data (3-fold average) for deterministic models with γ = 0.95. The con-
ventional classifier fC , fair classifier fF learned via the reductions algorithm, and the fair popular classifier fP learned via our
postprocessing techniques k-QLS, each using Gradient Boosted Trees.

in the case of randomized classifiers. Figure 12, 13 show model AUC and unfairness when fP is learned via the DOS algorithm
in the case of randomized classifiers. Similar to the case of Logistic Regression, we see that fP can achieve γ-popularity, and
β-fairness, for relatively large levels of γ with minimal degradation to model performance.

Figures 16,17 show the increase in expected false positive rate (FPR) as the level of enforced popularity γ increases. Similar
to the case of Logistic Regression we see that for larger γ that expected FPR is increases. The increase in expected FPR is due
to the fact that a larger fraction of the population, namely γ fraction, must have fC(xi) ≤ fP (xi). Therefore, any false positives
made by fC on this γ fraction must persist (or increase) for fP .

In Figure 14, we see that the in general, as the levels of unfairness decrease, and the levels of popularity increase, model
performance declines across all three datasets. In some examples, such as the Law School dataset with an SVM classifier,
model performance is far less affected by increased popularity, compared to stricter fairness. In contrast, we see that on the
Crime dataset with a GBT classifier, model performance is far more affected by increased popularity, compared to stricter
fairness. However, we observe in general, that there is a fundamental trade-off between the three values, implying that it may
be challenging to produce models which have high levels of performance, fairness, and popularity.

As demonstrated previously, a primary contributing factor to low model performance, for higher levels of popularity, is the
preservation of false positive errors. Instances in which higher levels of popularity correspond to lower model performance,
typically coincide with baseline classifiers which have larger rates of false positive errors.



Figure 9: Model performance and unfairness on test data (3-fold average) for deterministic models with γ = 0.95. The con-
ventional classifier fC , fair classifier fF learned via the reductions algorithm, and the fair popular classifier fP learned via our
postprocessing techniques k-QLS, each using Support Vector Machines.

Figure 10: Model performance and unfairness on test data (3-fold average) for randomized models with γ = 0.85. The con-
ventional classifier fC , fair classifier fF learned via the reductions algorithm, and the fair popular classifier fP learned via our
postprocessing techniques k-QLS, each using Gradient Boosted Trees.

Figure 11: Model performance and unfairness on test data (3-fold average) for randomized models with γ = 0.8. The con-
ventional classifier fC , fair classifier fF learned via the KDE algorithm, and the fair popular classifier fP learned via our
postprocessing techniques k-QLS, each using Support Vector Machines.



Figure 12: Model performance and unfairness on test data (3-fold average) for randomized models with γ = 0.8. The conven-
tional classifier fC , fair classifier fF learned via the reductions algorithm, and the fair popular classifier fP learned via our
postprocessing techniques DOS, each using Gradient Boosted Trees.

Figure 13: Model performance and unfairness on test data (3-fold average) for randomized models with γ = 0.8. The con-
ventional classifier fC , fair classifier fF learned via the KDE algorithm, and the fair popular classifier fP learned via our
postprocessing techniques DOS, each using Support Vector Machines.



Figure 14: Frontier of fairness, popularity, and expected accuracy for randomized classifiers with our k-QLS postprocessing
technique, using SVM (top) and Gradient Boosted Trees (bottom) for FPR fairness. Fair classifiers are trained using the Reduc-
tions algorithm.

C.4 Group Preference Over Fairness
A common method for learning β-fair classifiers is the so called Lagrangian penalty method with Lagrangian multiplier λ ∈ R,
i.e.,

fF = argmin
f∈H

L(f,X, Y ) + λ
(
U(f,X, Y,G)− β

)
Here λ gives the relative “importance” of fairness. When λ = 0 the objective of the conventional classifier is recovered. To
understand the preference of agents over fair and conventional models, we can also look at the the relative preference for
fairness among each group. In particular, suppose that each agent prefers the value of λ yielding the highest expected outcome.
Then the average of these preferred λ across each group gives the groups relative preference for fairness: higher values of λ
corresponds to a stronger preference for fairness.

In Figure 18 we see the average preferred λ of each group and as well as the total population. These choices of λ then lead
to the corresponding levels of unfairness in Figure 19. In each combination of hypothesis class and dataset, the advantaged
group G1 votes for smaller λ while the disadvantaged group G0 votes for larger λ (larger than the principals choice in-fact).
From this Figure we see that the advantaged group G1 (advantaged in terms of either PR, FPR, or TPR) prefers smaller values
of λ, while the disadvantaged group G0, prefers larger values of λ. Mover due to the relative size of G1, the total population
on average also prefers smaller values of λ. Thus there is somewhat of a fundamental trade-off between fairness and preferred
level of fairness.



Figure 15: Frontier of fairness, popularity, and expected accuracy for randomized classifiers with our k-QLS postprocessing
technique, using Logistic Regression (top) and Neural Networks (bottom) for FPR fairness. Fair classifiers are trained Using
the KDE algorithm.

Figure 16: Expected False Positive Rate (FPR) of k-QLS, on randomized classifiers for PR-fairness (left) TPR-fairness (center)
and FPR-fairness (right),as a function of γ (Gradient Boosted Trees).



Figure 17: Expected False Positive Rate (FPR) of k-QLS, on randomized classifiers for PR-fairness (left) TPR-fairness (center)
and FPR-fairness (right),as a function of γ (Support Vector Machines).

Figure 18: Average preferred λ of the population, or each group, for three choices of classifiers, Logistic Regression (left),
Gradient Boosted Trees, (center), and SVMs (right), for each of the 5 datasets.



Figure 19: The unfairness of each preferred λ. (corresponding to those in Figure 18


