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Abstract
The integrity of elections is central to democratic
systems. However, a myriad of malicious actors
aspire to influence election outcomes for financial
or political benefit. A common means to such ends
is by manipulating perceptions of the voting pub-
lic about select candidates, for example, through
misinformation. We present a formal model of
the impact of perception manipulation on election
outcomes in the framework of spatial voting the-
ory, in which the preferences of voters over can-
didates are generated based on their relative dis-
tance in the space of issues. We show that control-
ling elections in this model is, in general, NP-hard,
whether issues are binary or real-valued. However,
we demonstrate that critical to intractability is the
diversity of opinions on issues exhibited by the vot-
ing public. When voter views lack diversity, and
we can instead group them into a small number
of categories—for example, as a result of political
polarization—the election control problem can be
solved in polynomial time in the number of issues
and candidates for arbitrary scoring rules.

1 Introduction
Elections are among the core functional elements of demo-
cratic systems. Consequently, there is broad consensus that
their integrity is among the top democratic priorities. How-
ever, malicious actors may attempt to subvert elections for
their own means, whether financial or political [Caldwell et
al., 2019; Harper et al., 2019; Khetani-Shah and Deutsch,
2019]. A common approach for manipulating elections is by
spreading false information about select candidates, an ex-
treme example of which is the infamous “Pizzagate” cam-
paign targeting Hillary Clinton in the 2016 U.S. presidential
election [Robb, 2017]. Less extreme, but far more common,
is the spread of misinformation about the positions of candi-
dates on specific issues, such as taxation and debt.

The issue of election vulnerability to malicious manipula-
tion has been studied in the computational social choice lit-
erature from a computational complexity perspective under
the terms election control (when the election structure itself
is manipulated) [Bartholdi et al., 1992; Hemaspaandra et al.,

2007; Chen et al., 2017] and bribery (when manipulation is
through changing voter preferences over candidates) [Bred-
ereck et al., 2016; Faliszewski and Rothe, 2016].

The traditional study of election control takes voter pref-
erences as given, while considerations of bribery investigate
direct manipulations of preference rankings of individual vot-
ers. However, neither is a natural model of the impact of
misinformation about particular issues on the perceptions of
candidates by the voting public. To address this gap, we pro-
pose a new model of election control in the spatial voting the-
ory framework. Spatial voting theory explicitly captures voter
and candidate positions on issues, with voter preferences
over candidates determined by their relative distance in issue
space [Anshelevich and Postl, 2016; Anshelevich et al., 2018;
Enelow and Hinich, 1984]. In our model of election manipu-
lation, a malicious party can change voter perceptions of a tar-
get candidate on issues, subject to a budget constraint (more
precisely, we constrain the lp norm of the manipulation to
be below a specified bound).1 We consider both constructive
control, where the malicious goal is to cause the target can-
didate to win, and destructive control, in which the goal is to
cause the target candidate to lose.

We show that when the issues are binary-valued, the prob-
lem is hard even with two candidates, for both forms of con-
trol and for any lp norm with integer 1 ≤ p < ∞ used
to measure distance in issue space. When issues are real-
valued, however, the conclusions for constructive and de-
structive control differ slightly. For destructive control, the
problem is hard even with two candidates. For constructive
control, we show hardness for plurality elections when the
number of candidates is arbitrary, for lp norm with integer
1 < p ≤ ∞. However, if there are only two candidates and
we measure distance using l∞ norm, the control problem can
be solved in polynomial time. Furthermore, we show that if
we restrict either the number of issues or the number of vot-
ers to be bounded by a constant, all control problems become
tractable, whether issues are binary (for arbitrary lp norm) or
real-valued (for l2 and l∞), for arbitrary scoring rules used
to determine election outcomes. Moreover, we show that the

1This model can also be viewed as an example of bribery, in the
sense that the manipulation affects voter preference rankings over
candidates. Our use of the term election control is general, refer-
ring to any setting in which a malicious party wishes to subvert an
election, whatever means they use for doing so.
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tractability generalizes even when the number of voters is ar-
bitrary, but their opinions on issues are limited to only a con-
stant (that is, small) number of options.

These seemingly highly technical results offer a broader
insight: vulnerability of elections to malicious manipulation
of voter perceptions hinges on the extent to which voters ex-
hibit a high diversity of political views. When this is the case,
elections are highly resistant to manipulation. However, when
voters are Balkanized into a small number of groups with ef-
fective uniformity of views within each, for example, due to
political polarization, elections become easy to manipulate
through misinformation.

Our model of election control is related to several recent
studies of election control in the spatial voting theory frame-
work [Lu et al., 2019; Estornell et al., 2020]. However, the
means of manipulation in this closely related work is chang-
ing the relative importance of issues to voters, whereas our
focus is on changing voter perceptions of candidates.

Related Work. The study of election control was initiated
by Bartholdi et al. [1992], who studied the impact of adver-
sarially adding, deleting, or partitioning candidates or voters
on election outcomes in the constructive control framework.
Numerous follow-up efforts extended this analysis in a num-
ber of directions, such as destructive control [Hemaspaandra
et al., 2007], a variety of voting rules and settings [Men-
ton, 2012; Erdélyi et al., 2015; Chen et al., 2017], as well
as when voter preferences can be modified (commonly called
the bribery problem [Bredereck et al., 2016; Faliszewski and
Rothe, 2016] or optimal lobbying [Christian et al., 2007;
Binkele-Raible et al., 2014]).

In most election control settings voter preferences are spec-
ified directly as preference rankings over the candidates.
An alternative approach based on spatial theory of voting,
specifies voter and candidate positions on issues, with pref-
erence rankings then induced from relative distances be-
tween voter and candidate positions [Davis and Hinich, 1968;
Enelow and Hinich, 1984; Anshelevich and Postl, 2016;
Anshelevich et al., 2018]. Lu et al. [2019] were the first to
investigate election control within the spatial theory voting
model, with the adversary’s ability restricted to selecting a
subset of issues that become the focus of voting preferences.
Estornell et al. [2020] study a variation in which an adversary
can modify the relative importance of issues in determining
voter preferences over candidates. Both are distinct from our
model in which the adversary modifies not the importance of
issues, but the perceptions of a particular candidate by the
voters.

Several models of election control are also motivated by
the spread of misinformation about candidates on social net-
works [Wilder and Vorobeychik, 2018; Castiglioni et al.,
2020]. However, these focus on stochastic spread of misinfor-
mation in the social influence modeling framework [Kempe
et al., 2003], but use the conventional model of elections in
which voter preferences are directly specified, with misinfor-
mation having a direct impact on a target candidate’s relative
ranking for a given voter, rather than an indirect impact stem-
ming from the change in perceived positions on issues, as in
our model.

2 Preliminaries
We consider an election with a set of n candidates C =
{c1, . . . , cn} and m voters V = {v1, . . . , vm}. Following
spatial voting theory [Enelow and Hinich, 1984], we asso-
ciate each candidate and voter with a d-dimensional vector
corresponding to their positions (opinions) on issues, that is,
ci, vj ∈ I ⊆ Rd. Each voter vj ranks candidates in C accord-
ing to their lp distance from vj , ‖vj − ci‖p, with 1 ≤ p ≤ ∞
an integer; the closest candidate is ranked 1, and the farthest is
ranked n in the list of vi’s preferences. If not mentioned, the
parameters of the problem (e.g., |V|, |C| and d) are arbitrary.
We assume that there are no ties.

In our election control problem, the adversary has a tar-
get candidate whose voter perceptions they can manipulate.
Without loss of generality, let c1 be the target candidate. We
assume that the adversary can change the perception of c1
into c̃1, subject to the constraint that ||c̃1 − c1||p ≤ ε for
ε > 0. This “budget” constraint is natural: for example, if
the means for changing perceptions is social media misinfor-
mation, the change to perception is likely gradual, and one
cannot target arbitrary subsets of issues with an arbitrarily
large stream of malicious content. We consider two types of
control: constructive, in which the adversary’s goal is for c1
to win the election, and destructive, where the goal is for c1 to
lose. While we assume no ties in the actual preference rank-
ings, ties can arise due to adversarial activities; in that case,
we always break ties in the adversary’s favor.

We consider election control problems for arbitrary scor-
ing rules. In scoring rules, each candidate ci ranked tij
by voter vj receives a score f(tij), where f : [n] → R
is a non-increasing function. ci then receives a total score
si =

∑
j f(tij) from all voters, and the candidate with the

highest score si wins the election. Many common voting
rules are positional, such as plurality (f(1) = 1, and f(t) = 0
for t 6= 1), veto (f(n) = 0 and f(t) = 1 for t 6= n), Borda
(f(t) = n − t), and k-approval (for some 1 ≤ k ≤ n,
f(t) = 1 for all t ≤ k, and f(t) = 0 for t > k). Note
that plurality is a special case of k-approval with k = 1.

We study the problem both when issues are binary, i.e.,
I = {0, 1}d, salient if issues are framed in the form of yes-
no questions, such as “do you support leaving the European
Union?”, and when issues are real-valued (I = Rd).

3 Binary-Valued Issues
We begin by studying a special case of our problem in which
the issues are binary, that is, I = {0, 1}d, a variant we call
Binary Value Perception Manipulation (BVPM).
Definition 3.1 (BVPM). Given a set of candidates C, vot-
ers V , and d issues, is there a c̃1 ∈ I = {0, 1}d where
||c̃1 − c1||p ≤ ε for ε > 0 such that c̃1 wins the election?

Note that for l∞ the problem is trivial: either ε ≥ 1, in
which case we can set c1 to match any currently winning can-
didate (and c1 wins by best-case tiebreaking), or ε < 1 and
we cannot change c1. Thus all the results in this section are
for an arbitrary lp norm for p integer, 1 ≤ p < ∞. Without
loss of generality (since the label of 1 or 0 for each issue is
arbitrary), we assume that c1 takes a position labeled as 1 for
each issue, i.e., c1 = [1, . . . , 1].



We begin by showing that even with 2 candidates and ma-
jority voting the BVPM problem is NP-complete. We reduce
from Binary Issue Selection Control (BISC), shown by Lu
et al. [2019] to be NP-Complete with best-case tie-breaking
even when |C| = 2.
Definition 3.2 (BISC [Lu et al., 2019]). Given a set of can-
didates C, voters V , and d issues, is there a nonempty subset
of binary issues S ⊆ [1 : d] such that a target candidate c1
wins the plurality election?

Theorem 1. BVPM is NP-complete for constructive and de-
structive control even with 2 candidates and majority voting.

Proof. It is easy to check if a given c̃1 wins the election; thus,
BVPM is in NP. We now show hardness for constructive con-
trol by reduction from BISC. Let ε = (d−1)1/p, target candi-
date c1 = [1, 1, . . . , 1] and rival candidate c2 = [0, 0, . . . , 0].
Let the voter set of BVPM be the same as the one in BISC.

Suppose 2-candidate BISC has a solution S ⊆ [1 : d], S 6=
∅ that will let c1 win the election. For any voter vj ∈
V, j ∈ [m] that votes for target candidate in BISC, by the
problem definition of BISC, we have

∑
k∈S |c1,k − vj,k|p ≤∑

k∈S |c2,k − vj,k|p. We set c̃1,k = 1 if k ∈ S; c̃1,k = 0
if k ∈ Sc. Since S 6= ∅, |Sc| ≤ d− 1, c̃1 is within the bud-
get constraint. For k ∈ S, we have

∑
k∈S |c̃1,k − vj,k|p =∑

k∈S |c1,k − vj,k|p ≤
∑

k∈S |c2,k − vj,k|p. For k ∈
Sc, since c̃1,k = c2,k = 0, we then have |c̃1,k − vj,k|p =

|c2,k − vj,k|p. Thus we have
∑d

k=1 |c̃1,k − vj,k|p ≤∑d
k=1 |c2,k − vj,k|p. This means voter vj votes for c̃1 in

BVPM (||c̃1 − vj ||p ≤ ||c2 − vj ||p). c̃1 wins the election
and is a solution to two candidates BVPM.

If two candidates BVPM has a solution c̃1 that wins
the election, by the problem definition of BVPM, we
have

∑d
k=1 |c̃1,k − vj,k|p ≤

∑d
k=1 |c2,k − vj,k|p. We let

S = {k ∈ [d] | c̃1,k = 1}. Since c̃1,k = c2,k = 0, k ∈ Sc,
we have

∑
k∈Sc |c̃1,k − vj,k|p =

∑
k∈Sc |c2,k − vj,k|p; since

c̃1,k = c1,k = 1, k ∈ S, we then have
∑

k∈S |c1,k − vj,k|p =∑
k∈S |c̃1,k − vj,k|p ≤

∑
k∈S |c2,k − vj,k|p. Due to the bud-

get constraint ε = (d − 1)1/p, we must have S 6= ∅, which
satisfies the BISC solution requirement. S is a solution set to
two candidates BISC.

For destructive control, the same argument applies after
switching the positions of c1 and c2.

While BVPM is hard in general, we next show that the
problem is tractable for a constant number of voters.2 While
at first glance a constant number of voters seems an imprac-
tical restriction, we subsequently show that this result offers
real insight even when the number of voters is arbitrary.
Theorem 2. When the number of voters is constant, BVPM
can be solved in polynomial time for arbitrary scoring rules,
for both constructive and destructive control.

Proof sketch. Given an issue j, let vj be a vector correspond-
ing to the position of each voter on issue j. The key idea is
that when the number of voters m is a constant, there is also
a constant number l ≤ 2m of issue equivalence sets, where

2Note that this is trivial for a constant number of binary issues.

an equivalence set I is a set of issues with identical vj (con-
sequently, each issue in I has an identical and interchange-
able impact on the election outcome). Since the number of
issues of each equivalence set we are allowed to flip is at
most bεpc ≤ d, it is direct that we can exhaustively enumerate
all O(d2

m

) possibilities for arbitrary ε, which is polynomial
since m is constant.

While there is a simple poly-time algorithm for solving
BVPM, we can actually considerably improve on its time
complexity by leveraging additional problem structure. We
begin with the constructive control case for arbitrary scor-
ing rules. A key feature of arbitrary scoring rules is that as
long as c1 receives (one of) the highest scores, c1 wins the
election. Since the distances between each voter vj and all
candidates ci other than c1 are fixed, the relative rankings of
candidates ci (i ≥ 2) w.r.t. voter vj , j ∈ [m] are fixed as well.
Given the rankings of candidates ci (i ≥ 2) w.r.t. to voter vj
from closest to furthest as ci1 , . . . , cin−1 , we can enumerate
all scenarios of insertion positions of c1 in this sequence. We
denote the final ranking of c1 after insertion w.r.t. voter vj as
rj , meaning c1 will receive a score of f(rj) from vj , j ∈ [m].
By going through all scenarios of c1 getting a final ranking
position of (r1, r2, . . . , rm), rj ∈ [n],∀j ∈ [m], which corre-
sponds to c1 getting a score of (f(r1), f(r2), . . . , f(rm)), we
cover all the scenarios of c1 winning. As shown in Lemma 1,
this is equivalent to enumerating all scenarios of c1 getting a
ranking position higher than rj ∈ [n] w.r.t. vj for j ∈ [m].
The missing proofs of this and other results are provided in
the Supplement.

Lemma 1. For constructive control, if a ranking position
(r1, r2, . . . , rm) is feasible for c1 under the budget constraint
and lets c1 win the election, then for a ranking position
(r′1, r

′
2, . . . , r

′
m) that is feasible with r′j ≤ rj ,∀j ∈ [m], it

will also let c1 win the election.

This means by enumerating all scenarios of c1 get-
ting a ranking position higher than (r1, r2, . . . , rm),
which corresponds to c1 getting a score of at least
(f(r1), f(r2), . . . , f(rm)), we cover all the possible scenar-
ios of c1 winning. In fact, we can further simplify the cal-
culation by only enumerating some ranking positions each
corresponding to a unique f score value. Given an arbi-
trary scoring function f that has r unique values (|funiq| = r),
since f is non-increasing, we can partition the domain of f
by 0 = s0 < s1 < · · · < sr = n, so that {f(k)}si+1

k=si+1 have
the same value, i ∈ {0, 1, . . . , r − 1}. This means si+1 is the
lowest ranking position that corresponds to score f(si+1) and
{f(si)}ri=1 contains all the unique values of f .

Lemma 2. For constructive control, by enumerating all sce-
narios of c1 getting a ranking position higher than tj w.r.t.
voter vj for tj ∈ {s1, . . . , sr},∀j ∈ [m], we cover all the
possible scenarios of c1 winning.

Next we solve the problem for each (t1, . . . , tm) scenario
with tj ∈ {s1, . . . , sr},∀j ∈ [m]. For each voter vj , j ∈ [m],
we rank candidates ci (i ≥ 2) by their distances to voter vj
from closest to furthest, and use dtjj to denote the distance
between vj and the candidate ranked tj-th closest to it. Since



the tie breaks in the adversary’s favor, as long as c1’s distance
to vj is no more than dtjj , c1 will receive a score of at least
f(tj) from vj . Notice that since the rankings of ci (i ≥ 2)

do not include c1, only dtjj for 1 ≤ tj ≤ n − 1 are properly
defined. For tj = sr = n, we let dnj = +∞, since c1 is
guaranteed to get at least the lowest score f(n).

For each scenario, the problem can be represented as the
following integer linear constraint problem:

xi ≤ min{bi, bεpc}, 1 ≤ i ≤ 2m (1a)
2m∑
i=1

zijxi + (d0j )p ≤ (d
tj
j )p, 1 ≤ j ≤ m (1b)

2m∑
i=1

xi ≤ bεpc xi ∈ Z+, (1c)

where xi is the number of issues in an issue equivalence class
i that we want to flip to 0, bi is the size of the i-th issue equiv-
alence class (where

∑
i bi = d), d0j is the original distance

between target candidate c1 and voter vj . zij ∈ {−1,+1} is
the sign of impact of flipping the issue: zij = +1 if pre-
viously the j-th voter in any issue in the i-th equivalence
class is 1 (since flipping the c1 to 0 will increase the dis-
tance) and zij = −1 if previously it is 0, since flip the target
candidate to 0 will decrease the distance. Since the size of
the input of this integer feasibility problem is O(log(d)) and
the number of variables is constant, it can be solved in time
O(log(d)) [Lokshtanov, 2009, Theorem 2.8.1].

The total number of times we need to run the ILP and check
whether c̃1 wins the election is bounded by the number of
unique (t1, . . . , tm) scenarios, which is |funiq|m. For an arbi-
trary scoring function f , the time complexity for calculating
voter-candidate distances is O(nd), ranking distances takes
O(n log(n)) time. The calculation of the issue equivalence
sets takesO(d) time. For each scenario, solving the ILP takes
O(log(d)) time; calculating the distance between c̃1 and all
voters takesO(d) time; checking whether c̃1 wins the election
takes O(n) time. The total time complexity of the algorithm
is O(n(d+ log(n)) + |funiq|m(d+ n)).

If, in addition, |funiq| = r is constant (e.g., for plurality),
then the number of scenarios |funiq|m is constant. Moreover,
we do not need to do a total sort for the distances. Through
finding the tj-th order statistics and Quicksort Partition, the
total time complexity of the algorithm is O(nd).

In Supplement B we present a similar analysis and algo-
rithm as above for destructive control. In either case, the
complexity is linear in the dimension d of the issue space.

As noted earlier, considering a constant number of voters
may seem unrealistic. However, we note that these algorithms
are straightforward to generalize to a setting with an arbitrary
number of voters, but in which the positions of voters on is-
sues, vj , can only take on values from a small collection of
possibilities Q (that is, |Q| is a constant, and for each voter
j, vj ∈ Q). Specifically, the only change is to calculate the
weighted final score in each case above, where the weight for
each distinct voter position (opinion) type q ∈ Q is the num-
ber of voters j with position vj = q. This is expressed in the
following corollary.

Corollary 1. BVPM can be solved in polynomial time when
the number of distinct voter opinions is constant for construc-
tive and destructive control for arbitrary scoring rules.

The key insight that our results offer is that the complex-
ity of manipulating elections by changing voter perceptions
about candidates hinges on the diversity of opinions among
voters. In particular, when voters hold a broad diversity of
views, manipulation is intractable; if, in contrast, voters are
siloed into a relatively small collection of echo chambers,
subverting elections becomes easy. Below, we show that this
observation extends to real-valued issues.

4 Real-Valued Issues
Next, we turn to Real Value Perception Manipulation
(RVPM), the problem identical to BVPM except that now
the issue space I is real-valued.

4.1 Hardness Results
We begin by showing that nearly every variant of RVPM is,
in general, computationally intractable. First, we show that
the election control problem is hard under lp norm with inte-
ger 1 < p ≤ ∞ under destructive control even with 2 candi-
dates and majority voting, and constructive control even for
plurality voting. Nonetheless, we show that constructive con-
trol with l∞ norm and only two candidates is in P.

Our hardness result for destructive control uses a reduction
from 3-SAT, the proofs are deferred to the supplement (A.3
and A.4).
Theorem 3. The destructive control variant of RVPM is NP-
complete under lp norm for integer 1 < p ≤ ∞ even with two
candidates and majority voting.

The following theorem (proved in Supplements A.5
and A.6) shows that constructive control is also hard.
Theorem 4. The constructive control variant of RVPM un-
der lp norm for integer 1 < p ≤ ∞ is NP-complete for plu-
rality voting.

Note that Theorem 4 is stated for an arbitrary number of
candidates. For two candidates and l∞ norm, however, con-
structive variant of RVPM is easy.
Theorem 5. The constructive control l∞ norm variant of
RVPM with 2 candidates can be solved in time O(md) for
arbitrary scoring rules.

The proof is provided in Supplement A.7. Note that our
results do not resolve the question of constructive control with
p <∞; we leave it as an open question.

Next, we consider two restrictions of RVPM: 1) assuming
a constant number of issues, and 2) assuming a constant num-
ber of distinct voter opinions. In all these restricted cases, we
show how to solve RVPM in polynomial time for l2 and l∞
norm. We leave the problem open for arbitrary lp norms.

4.2 Constant Number of Issues
When the number of issues is constant, we show that RVPM
is tractable for l2 and l∞ norms (our focus on these two
norms follows the precedent from prior literature [Crama et
al., 1995; Crama and Ibaraki, 1997]). Note that unlike with



binary issues, tractability of RVPM with a constant number
of issues is non-trivial since the issue space is continuous and
cannot be exhaustively searched in finite time.

Constructive Control
We start by studying the problem of constructive control, with
RVPM in that case closely related to the well-known prod-
uct positioning and ball intersection problems [Crama et al.,
1995]. The goal in product positioning is to find x ∈ Rm that
maximizes the number of consumers for whom x is closer
(in lp) to their ideal product than any of the competitors. The
ball intersection problem aims to maximize the weighted sum
of lp balls to which x belongs. Neither exactly captures our
problem given the presence of the attacker budget constraint
and different scoring scenarios, but both are useful tools in
constructing the algorithms for our problem below.
Theorem 6. RVPM can be solved in polynomial time under
l2 norm when the number of issues is constant for construc-
tive control for arbitrary scoring rules.

Proof. We first convert our problem into the ball intersection
problem. Let Btj

j be the ball that corresponds to voter vj ,
with radius dtjj as defined in the constructive control variant
of BVPM, that is,

B
tj
j = {c̃1 ∈ Rd | ||c̃1 − vj ||2 ≤ d

tj
j }.

Similarly, we define the candidate budget ball

Bc = {c̃1 ∈ Rd | ||c̃1 − c1||2 ≤ ε}.
Since the tie breaks in the adversary’s favor, c̃1 will receive
a score of at least f(tj) from voter vj iff c̃1 falls within Btj

j
and Bc. According to Lemma 2 (which also applies when
issues are real-valued), by finding a representative point c̃1
within {Bc} ∪ (

⋃m
j=1{B

tj
j }) for all scenarios of (t1, . . . , tm)

with tj ∈ {s1, . . . , sr} (partition of the domain of f based on
unique values as defined in the constructive control variant of
BVPM), ∀j ∈ [m], we cover all the scenarios of c1 winning.
We can now directly apply the ball intersection algorithm by
Crama et al. [1995] for l2 and constant d to our problem only
once for {Bc} ∪ (

⋃m
j=1

⋃r
l=1{B

sl
j }), the resulting set P (rep-

resentative points of intersections) contains a representative
point for all the scenarios. We check for each point in P
whether it is within Bc and wins the election. The time com-
plexity of the algorithm is exponential only in d.

A similar result, based on a similar connection to box in-
tersection, can be obtained for the l∞ norm.
Theorem 7. RVPM can be solved in polynomial time under
l∞ norm when the number of issues is constant for construc-
tive control for arbitrary scoring rules.

Destructive Control
Next we study the problem under destructive control. Define
an open voter ball corresponding to voter vj with radius dtjj
under l2 norm as B̊tj

j = {c̃1 ∈ Rd | ||c̃1 − vj ||2 < d
tj
j }, and

recall that dtjj is the distance between vj and the candidate
ranked tj-th closest to it. The next lemma, proved in the Sup-
plement, provides an important building block.

Lemma 3. Given k open balls {B̊1, . . . , B̊k} and a closed
ballBc, let P be the representative points of intersections (de-
fined in Crama et al. [1995]) w.r.t. {Bc, B1, . . . , Bk}, where
Bj is the closed ball corresponds to B̊j , ∀j ∈ [k]. For any
given family of open balls {B̊i1 , . . . , B̊ir} ⊆ {B̊1, . . . , B̊k},
let P ′ = {x | x /∈ B̊j ,∀j ∈ {i1, . . . , ir}, x ∈ Bc}. If P ′ 6= ∅,
then P ∩ P ′ 6= ∅.

Next, we show that when the number of issues is constant,
the destructive control variant of RVPM is tractable.
Theorem 8. When the number of issues is constant, the de-
structive control variant of RVPM can be solved in polyno-
mial time under l2 norm for arbitrary scoring rules.

Proof. Since the tie breaks in the adversary’s favor, within
Bc, c̃1 will get a score of no more than f(tj) from voter vj iff
it falls outside of B̊tj

j . Similar to Theorem 6, we cover all the
scenarios of c1 losing by finding the set that contains a repre-
sentative point within Bc that falls outside of

⋃m
j=1{B̊

tj
j } for

all scenarios of (t1, . . . , tm) with tj ∈ {s1, . . . , sr} (partition
of the domain of f based on unique values as defined in the
destructive control variant of BVPM), ∀j ∈ [m]. Lemma 3
shows us that the set P (representative points of intersections)
for the family of balls {Bc} ∪ (

⋃m
j=1

⋃r
l=1{B

sl
j }) contains a

representative point for all the scenarios. The problem could
be solved in polynomial time with minor modifications to the
algorithm in Theorem 6.

The destructive control problem with l∞ norm involves
solving a non-convex feasibility problem. The next lemma
shows that the problem of relevance can nevertheless be
solved in polynomial time.
Lemma 4. For the feasibility problem

||ỹ − y||∞ ≤ ε (2a)
||ỹ − ai||∞ ≥ bi, i ∈ [k] (2b)

ε > 0, bi > 0 ỹ, y, ai ∈ Rd, (2c)

if ỹ ∈ Rd satisfy constraint (2a) and ∪dj=1Sj(ỹj) = [k],
where Sj(ỹj) = {i ∈ [k] | |ỹj − ai,j | ≥ bi}, ∀j ∈ [d], then
ỹ is a solution to the feasibility problem. Moreover, for
all j ∈ [d], let set Pj =

⋃k
i=1({−bi + ai,j , bi + ai,j} ∩

[−ε+ yj , ε+ yj ]), or Pj = {yj} if the set is empty, then
P = {p ∈ Rd | pj ∈ Pj ,∀j ∈ [d]} contains a representative
solution point ỹ to the problem.

We use Lemma 4 to show that the destructive control vari-
ant of RVPM is also tractable for the l∞ norm.
Theorem 9. RVPM can be solved in polynomial time under
l∞ norm when the number of issues is constant for destructive
control for arbitrary scoring rules.

Proof. We solve the problem by using Lemma 4 to find the
set P which contains a representative solution point for all
the scenarios of (t1, . . . , tm) (defined as in Theorem 8). Each
scenario represents finding a c̃1 within the budget constraint
that gets a score of no more than f(tj) from voter vj , j ∈ [m]:

||c̃1 − c1||∞ ≤ ε (3a)

||c̃1 − vj ||∞ ≥ d
tj
j , j ∈ [m] (3b)



where d
tj
j is defined in the destructive control variant of

BVPM. Notice that there are in total m · |funiq| open hyper-
cubes involved. According to Lemma 4, the representative
solution set P for all scenarios has at most 2m · |funiq| choices
for each dimension. The time complexity of the algorithm is
exponential only in d.

4.3 Constant Number of Distinct Voters
Next, we turn to the case when the number of distinct voter
opinion vectors vj is bounded by a constant. As in Section 3,
we simplify the discussion by assuming that the number of
voters is constant; generalization to an arbitrary number of
voters whose opinions can be grouped into a small set Q
of possibilities is straightforward using the same idea as for
BVPM. For l2 norm, we use the ball intersection algorithm
as in Section 4.2.

Theorem 10. When the number of voters is constant, the con-
structive and destructive control variants of RVPM can be
solved in polynomial time under the l2 norm for arbitrary
scoring rules.

Proof. For constructive control, we solve the problem
for each scenario of (t1, . . . , tm) (defined as in Theo-
rem 6) through finding a representative point within {Bc} ∪
(
⋃m

j=1{B
tj
j }), which takes O(d3) time using a variation of

the ball intersection algorithm by Crama et al. [1995] as in
Theorem 6. Since there are in total O(|funiq|m) scenarios,
the problem can be solved in polynomial time. For destruc-
tive control, a similar argument holds and the problem can be
solved by using a variation of the ball intersection algorithm
as in Theorem 8.

For l∞ norm, the constructive case can be solved by the
application of linear programming.

Theorem 11. When the number of voters is constant, the con-
structive control variant of RVPM can be solved in polyno-
mial time under the l∞ norm for arbitrary scoring rules.

Proof. For each scenario of (t1, . . . , tm) (defined as in The-
orem 6), we solve the below linear programming:

||c̃1 − c1||∞ ≤ ε (4a)

||c̃1 − vj ||∞ ≤ d
tj
j , j ∈ [m] (4b)

Since each LP has O(d) linear constraints, and there are
O(|funiq|m) scenarios, the problem is polynomial time solv-
able. Alternatively, we can check the interval endpoints sim-
ilar to Lemma 4 for each dimension. Since m is a constant,
the algorithm returns c̃1 in O(d) time if a solution to the LP
exists, or NO if not feasible.

The destructive case is somewhat more involved. We begin
with a lemma that again shows that a non-convex feasibility
problem we need to solve is tractable.

Lemma 5. The feasibility problem in Lemma 4 can be solved
in linear time if the number of constraints k is constant.

Proof sketch. According to Lemma 4, for each dimension
j ∈ [d], we could compute set Pj and its corresponding
set Sj = {Sj(pj) | pj ∈ Pj}. Finding a solution to the fea-
sibility problem is equivalent to finding Sj(pj) ∈ Sj for all
j ∈ [l], with some l ≤ d that satisfy ∪lj=1Sj(pj) = [k],
and [p1, p2, . . . , pl, yl+1, yl+2, . . . , yd] is a solution. Since k
is constant, the algorithm is linear and of complexity O(d).
We can also determine in linear time if none of the represen-
tative points satisfy the feasibility condition, and return NO
in that case. The detailed algorithm and proof are provided in
Supplement C.

Theorem 12. When the number of voters is constant, the de-
structive control variant of RVPM can be solved in polyno-
mial time under l∞ norm for arbitrary scoring rules.

Proof. Using Lemma 5, we can solve the linear feasibility
problem in Equation (3) where m is constant for each sce-
nario of (t1, . . . , tm) (defined as in Theorem 8). Each fea-
sibility problem can be solved in O(d) time and there are
O(|funiq|m) scenarios. The full time complexity of the al-
gorithm is O(n(d+ log(n)) + |funiq|m(d+ n)), or O(nd) if
|funiq| is constant.

We can extend the results to an arbitrary number of vot-
ers with a constant number of distinct opinions by the same
argument as for BVPM.

5 Conclusion
We model the impact of political misinformation on elections
as election control in the spatial model of voting in which an
adversary manipulates perceptions of the positions of a tar-
get candidate by the voters. Our central observation, which
obtains both when issues are real-valued and binary, and for
different ways we can measure distance in generating pref-
erences over candidates based on their relative positions to
voters, is that what matters is the extent of opinion diversity
in the voting population. Specifically, when voter positions
on issues are highly diverse, the manipulation problem is in-
tractable in most settings. In contrast, when voter views can
be reduced by a small number of opinion groups, the control
problem becomes linear in dimension when issues are binary,
and polynomial with real-valued issues. Our characterization
of the complexity landscape leaves several open questions,
such as hardness of constructive control with two candidates
in the setting with real-valued issues (we only show that it
is tractable for l∞ norm). Furthermore, our negative results
for real-valued issues do not address the case of l1, while our
positive results only apply to l2 and l∞ in this setting.

Our model has several important limitations that suggest
further useful future directions. First, we assume that the
same norm is used both by voters to rank candidates, and to
limit the extent of perception manipulation; however, these
distances may often be useful to measure in different ways.
Second, we assume that perception manipulation has identi-
cal impact on all voters. A more sophisticated model would
blend this with the election control approaches in which mis-
information spreads through a social network, with only a
subset of voters impacted, potentially in different ways.
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Supplementary Materials
A Missing Proofs
A.1 Proof of Lemma 1
For each voter vj , j ∈ [m], we rank candidates ci (i ≥ 2) by
their distances to vj from closest to furthest. Without loss
of generality, we assume candidates c2, c3, . . . , cn are ranked
from closest to furthest w.r.t. vj . Then when c1 is inserted
into this sequence and is ranked rj , the score each candidate
receives from vj is as below:

c2 ... crj c1 crj+1 ... cn
f(1) ... f(rj − 1) f(rj) f(rj + 1) ... f(n)

If we move c1 from ranking position rj to r′j , r′j ≤ rj ,
since f is a non-increasing function, the score c1 receives
from vj will increase from f(rj) to f(r′j); the scores candi-
dates crj+1, crj+2, . . . , cn and c2, c3, . . . , cr′j receive from vj
will not change; for candidates cr′j+1, cr′j+2, . . . , crj , since
their rankings will decrease by 1, the scores they receive
from vj will not increase. This means if we move c1
from ranking position (r1, r2, . . . , rm) to (r′1, r

′
2, . . . , r

′
m),

r′j ≤ rj ,∀j ∈ [m], the total score c1 receives will not de-
crease, while the total scores other candidates receive will
not increase. Since c1 wins the election with ranking position
(r1, r2, . . . , rm), c1 will also win the election with ranking
position (r′1, r

′
2, . . . , r

′
m).

A.2 Proof of Lemma 2
Without loss of generality, we assume candidates
c2, c3, . . . , cn are ranked from closest to furthest w.r.t.
voter vj . We next insert c1 into this sequence and as-
sume c1 receives a score of f(si+1) from vj , where
i ∈ {0, 1, . . . , r − 1}. After the insertion, the score each
candidate receives from vj is as below:

..., csi+1 ..., c1, ... csi+1+1, ..., csi+2 csi+2+1, ...
f(si) f(si+1) f(si+2) f(si+3)

Notice that whichever ranking position c1 takes among
si + 1, si + 2, . . . , si+1, the final score each candidate re-
ceives from vj are the same, meaning these ranking positions
are equivalent. Since the solution set of getting a ranking po-
sition higher than si+1 covers the solution set of getting a
ranking position higher than si + 1, si + 2, . . . , si+1 − 1, we
only need to consider si+1.

A.3 Proof of Theorem 3 (lp norm, 1 < p <∞)
Checking whether target candidate c̃1 loses the election is
clearly in P. We next prove hardness by reduction from 3-
SAT. The proof is in Rd+1 space.
Definition A.1 (3-SAT). Given a set of variables X , a set
of clauses C over X where ∀c ∈ C has |c| = 3, is there an
assignment to the variables X that satisfies all the clauses?

Let target candidate c1 = [0, 0, . . . , 0, 0], rival candidate
c2 = [0, 0, . . . , 0, a] with a = (( 1

d + 1)p+( 1
d )p(d−1)−1)

1
p ,

and ε = d
1
p−1. Given a 3-SAT instance with d− 1 variables

{X1, . . . , Xd−1} and r clauses {E1, E2, . . . , Er}, we create
a voter profile vD = [0, 0, . . . , 0,−a] which is adopted by
r voters. Note that since the distance between c2 and vD
is 2a, while the maximum distance between c̃1 and vD is
a+ d

1
p−1 < 2a (max ||c̃1 − vD||p, s.t., ||c̃1||p ≤ ε), wher-

ever c̃1 moves, vD will always vote for c1. Let ei ∈ Rd+1 be
the unit vector that has 1 in the i-th position. We create 2d
voters {vei , v−ei}di=1 where vei = ei, v−ei = −ei, i ∈ [d].
Next we create r voters {vi}ri=1 where each vi corresponds
to clause Ei, i ∈ [r]. Given fixed parameters α > 0, l > 0
(which we will specify later), for each vi, vi,j = −α if Xj

is included in clause Ei, vi,j = α if Xj is included in clause
Ei, j ∈ [d− 1]; vi,d = lα; 0 otherwise.

We now specify parameters α and l. We chose α > 0 and
l > 0 so that they satisfy the below inequality:

(
1

d
+ α)p + 2|1

d
− α|p + (d− 4)(

1

d
)p + (

1

d
+ lα)p

> ap + 3αp + (lα)p

> 3|1
d
− α|p + (d− 4)(

1

d
)p + (

1

d
+ lα)p.

(5)

We claim such parameters must exist. We first move term
3αp + (lα)p to the right and left side of the inequality. Since
d and p are given, ap is a fixed value in R, and the right and
left side of the inequality are continuous w.r.t. α and l, with
gap equals to ( 1

d +α)p−| 1d−α|
p > 0. This means if we could

find (a) l > 0, α1 > 0 that satisfy ( 1
d + α1)p + 2| 1d − α1|p +

(d− 4)( 1
d )p + ( 1

d + lα1)p − 3αp
1 − (lα1)p > ap and (b)

α2 > 0 that satisfy ( 1
d + α2)p + 2| 1d − α2|p + (d− 4)( 1

d )p +

( 1
d + lα2)p − 3αp

2 − (lα2)p < ap, by intermediate value the-
orem there must exist α > 0 that satisfies inequality (5). No-
tice that regardless of the value of l, we could always find
α1 > 0 large enough so that the condition (a) is satisfied; as
for condition (b), by having α2 = 1

d , we could find l > 0 that
satisfies the condition.

Now we have 2r + 2d voters in total, and they all vote
for c1. RVPM moves c1 to c̃1 so that c̃1 loses at least r + d
voters and loses the election. Recall that vD will always vote
for c̃1. We next find a solution c̃1 that will lose d votes in
{vei , v−ei}di=1 and all r voters in {vi}ri=1.

Notice that the distance between c2 and any voter in
{vei , v−ei}di=1 is (ap + 1)

1
p . We claim that for c̃1 to lose d

voters in {vei , v−ei}di=1 (which is maximum), c̃1 has to have
format [± 1

d ,±
1
d , . . . ,±

1
d , 0]. Given the budget constraint

||c̃1||p ≤ ε, the solution of c̃1 losing maximum number of vot-
ers can always be achieved at the constraint boundary, since
we can always move c̃1,d+1 away from 0 until ||c̃1||p = ε
and this will only increase the distance between c̃1 and any
voter in {vei , v−ei}di=1 ∪ {vi}ri=1. With ||c̃1||p = ε, we have
||c̃1 − vei ||pp = |c̃1,i − 1|p + d1−p − |c̃1,i|p, ||c̃1 − v−ei ||pp =

|c̃1,i + 1|p + d1−p − |c̃1,i|p. Recall that in destructive con-
trol c̃1 will lose the voter in case of tie-breaking. Since
for c̃1 to lose vei , due to the budget constraint, we must
have c̃1,i ≤ − 1

d ; and for c̃1 to lose v−ei we must have
c̃1,i ≥ 1

d ; c̃1 can only lose maximum one voter between vei
and v−ei , i ∈ [d]. Given the budget constraint, in order for c̃1



to lose d voters in {vei , v−ei}di=1, c̃1 has to have the above
format.

Next we show that finding a c̃1 to lose all r voters in
{vi}ri=1 is equivalent to finding a solution to 3-SAT.

Given a 3-SAT solution {X1, . . . , Xd−1}, we let c̃1,i =
1
d if Xi is TRUE, c̃1,i = − 1

d if Xi is FALSE, i ∈ [d− 1];
c̃1,d = − 1

d and c̃1,d+1 = 0. It is easy to check c̃1 satisfies
the budget constraint. For any clause Ei, i ∈ [r] that has t
literals to be TRUE (1 ≤ t ≤ 3), from inequality (5) we have
||c̃1 − vi||p ≥ ||c2 − vi||p, meaning c̃1 loses voter vi and is a
solution to RVPM.

Given a RVPM solution c̃1, since c̃1 has format
[± 1

d ,±
1
d , . . . ,±

1
d ,±

1
d , 0], we can construct a 3-SAT solu-

tion {X1, . . . , Xd−1} where variables Xi = TRUE if c̃1,i =
1
d , or Xi = FALSE if c̃1,i = − 1

d , i ∈ [d− 1]. Since
vi,d = lα, we assume c̃1,d = − 1

d . For any clause Ei, i ∈ [r]
that has t literals to be TRUE (0 ≤ t ≤ 3), since we need
c̃1 to lose voter vi, meaning ||c̃1 − vi||p ≥ ||c2 − vi||p, from
inequality (5) we must have t ≥ 1.

A.4 Proof of Theorem 3 (l∞ norm)
For RVPM l∞ norm, again, it is easy to see that it’s in NP.
We now show hardness again by reduction from 3-SAT. The
proof is in Rd+1 space.

We set target candidate c1 = [0, 0, . . . , 0, 0], rival candi-
date c2 = [0, 0, . . . , 0, 2] and let ε = 1. We are given a
3-SAT instance with d − 1 variables {X1, X2, . . . , Xd−1}
and r clauses {E1, E2, . . . , Er}. We create r voters {vi}ri=1
where each vi corresponds to clause Ei, i ∈ [r]. For each vi,
we set vi,j = −1 if Xj is included in clause Ei, or vi,j = 1 if
Xj is included in clauseEi, j ∈ [d−1]; 0 otherwise. We also
create r dummy voters at [0, 0, . . . , 0, 0]; those dummy voters
will always vote for c̃1 since their distances to c2 are always
2 while their distances to c̃1 are within 1 wherever c̃1 moves.
We now have 2r voters, and they all vote for c1. RVPM will
change c1 to c̃1 so that c̃1 loses at least r voters.

Given a 3-SAT solution {X1, . . . , Xd−1}, we let c̃1,i = 1
if Xi is TRUE, and c̃1,i = −1 if Xi is FALSE, i ∈ [d − 1];
c̃1,d = 0. It is easy to check ||c̃1 − vi||∞ = ||c2 − vi||∞ =
2,∀i ∈ [r]. c̃1 loses r voters and loses the election.

Given a RVPM solution c̃1, since c̃1 loses the election, we
must have ||c̃1 − vi||∞ ≥ ||c2 − vi||∞ = 2,∀i ∈ [r]. Since
vi ∈ {0,±1}d,∀i ∈ [r] and ||c̃1||∞ ≤ 1, c̃1 can only lose r
voters by having ||c̃1 − vi||∞ = 2,∀i ∈ [r]. Since vi,d = 0,
we must have c̃1,i ∈ {−1, 1}, i ∈ [d − 1]. By setting Xi =
TRUE if c̃1,i = 1, Xi = FALSE if c̃1,i = −1, i ∈ [d− 1], we
have a solution {X1, . . . , Xd−1} to 3-SAT.

A.5 Proof of Theorem 4 (lp norm, 1 < p <∞)
Checking whether a given target candidate c̃1 wins the elec-
tion is clearly in P. We now show hardness by reduction from
3-SAT. The proof is in Rd space.

Let ei ∈ Rd be the unit vector that has 1 in the i-th position,
d′ = d− 1. We first introduce the below lemma.

Lemma 6. The smallest ball that encloses {ei}d
′

i=1 is cen-
tered at c

∑d′

i=1 ei, where c = 1
1+(d′−1)1/(p−1) , and the radius

of the ball is rd′ = ((d′ − 1)cp + (1− c)p)1/p.

Proof. By symmetry, the center of the smallest ball has the
form c

∑d′

i=1 ei (0 ≤ c ≤ 1), and its distance to ei, i ∈ [d′] is

||ei − c
d′∑
i=1

ei||p = ((d′ − 1)cp + (1− c)p)1/p.

Since the second order derivative of the distance w.r.t. c
is always greater than 0, by having the first order derivative
equals zero, we have c = 1

1+(d′−1)1/(p−1) .

Notice that we could always change any ei to −ei, i ∈ [d′]
in Lemma 6 the conclusion still holds.

Next we construct the voter set and candidate set for RVPM
problem. Let target candidate cT = [0, 0, . . . , 0, 0] and
ε = c · (d′)

1
p (c is defined in Lemma 6). Given a 3-SAT

instance with d − 2 variables {X1, . . . , Xd−2} and r clauses
{E1, E2, . . . , Er}, we create r voters {vi}ri=1 and r candi-
dates {ci}ri=1 where each vi and ci corresponds to clause
Ei, i ∈ [r]. Given fixed parameters l > 0, α > 0 (which
we will specify later), if Xj is included in clause Ei, we set
vi,j = ci,j = α, and if Xj is included in clause Ei, we set
vi,j = ci,j = −α, j ∈ [d − 2]; vi,d′ = ci,d′ = lα; ci,d = rd′
(rd′ is defined in Lemma 6); 0 otherwise. We next create
2d′ voters {vei , v−ei}d

′

i=1 and 2d′ candidates {cei , c−ei}d
′

i=1
where {vei , cei} corresponds to ei and {v−ei , c−ei} corre-
sponds to −ei. For any i ∈ [d′], we set vei,i = cei,i = 1 and
v−ei,i = c−ei,i = −1; cei,d = c−ei,d = rd′ ; 0 otherwise.
We also create a rival candidate cR = [M, 0, 0, . . . , 0, 0] and
d′ + r dummy voters also at [M, 0, 0, . . . , 0, 0], where M is
large enough so that those dummy voters will always vote for
cR. Notice that as of current, any candidates created from
3-SAT clauses and from {±ei}d

′

i=1 receives one vote, that is,
vj votes for cj , j ∈ [r]; vei votes for cei and v−ei votes for
c−ei , i ∈ [d′]; the distance between each pair of voter and
candidate is rd′ . RVPM moves c1 to c̃1 so that c̃1 wins at
least r + d′ voters and wins the election.

Recall that when we create the voters and candidates w.r.t.
3-SAT clauses, we have two fixed parameters l > 0, α > 0.
We chose those two parameters to satisfy the below inequal-
ity:

|α− c|p + 2(α+ c)p + (d′ − 4)cp + |lα− c|p <
rpd′ < 3(α+ c)p + (d′ − 4)cp + |lα− c|p.

(6)

We claim that parameters l > 0, α > 0 that satisfy inequality
(6) must exist. Since d′ and p are given, rd′ is a fixed value in
R, and the right and left side of the inequality are continuous
w.r.t. α and l, with gap equals to (α + c)p − |α − c|p > 0.
This means if we could find (a) l > 0, α1 > 0 that satisfy
|α1 − c|p + 2(α1 + c)p + (d′ − 4)cp + |lα1 − c|p > rpd′ and
(b) α2 > 0 that satisfy |α2 − c|p+2(α2 + c)p + (d′ − 4)cp+
|lα2 − c|p < rpd′ , by intermediate value theorem there must
exist α > 0 that satisfies inequality (6). Notice that regardless
of the value of l, we could always find α1 > 0 large enough so
that condition (a) is satisfied. Next we find l > 0 and α2 > 0
that satisfy condition (b). Plug in rpd′ = (d′−1)cp +(1− c)p,
we have |lα2− c|p < 3cp +(1− c)p−|α2− c|p−2|α2 + c|p.
Since 0 < c < 1

2 , there exists α2 such that 3cp + (1− c)p −



|α2 − c|p − 2|α2 + c|p > 0, we can then find l > 0 such that
the inequality holds (e.g., l = c/α2).

With parameters l > 0 and α > 0 chosen and fixed, next
we show that finding a c̃1 to win the election (i.e., win at least
r + d′ voters) is equivalent to finding a solution to 3-SAT.

Given a 3-SAT solution {X1, . . . , Xd−2}, we let c̃T,i = c
if Xi is TRUE, c̃T,i = −c if Xi is FALSE, i ∈ [d− 2];
c̃T,d′ = c; c̃T,d = 0. It is easy to check c̃T satisfies the bud-
get constraint and win d′ voters in {vei , v−ei}d

′

i=1 by having
a distance of rd′ . For any clause Ei, i ∈ [r] that has t literals
to be TRUE (1 ≤ t ≤ 3), by inequality (6) we have

||vi − c̃T ||p
=t|α− c|p + (3− t)(α+ c)p + (d′ − 4)cp + |lα− c|p

<rd′ .

c̃T wins r + d′ voters and wins the election.
Given a RVPM solution c̃T , since c̃T needs to win at least

r+d′ voters, this means c̃T has to have a distance of no more
than rd′ to at least d voters in {vei , v−ei}d

′

i=1. By Lemma
6 and budget constraint requirement, c̃T has to have format
c̃T,i ∈ {−c, c}, i ∈ [d− 1], c̃T,d = 0, and c̃T wins only d′

voters in {vei , v−ei}d
′

i=1. Since vi,d′ = lα, i ∈ [r], we as-
sume c̃T,d′ = c. We can then construct a 3-SAT solution
{X1, . . . , Xd−2} where variables Xi = TRUE if c̃1,i = c,
Xi = FALSE if c̃1,i = −c, i ∈ [d− 2]. For any clause
Ei, i ∈ [r] that has t literals to be TRUE (0 ≤ t ≤ 3), the
distance between c̃T and vi is

||vi − c̃T ||p
=t|α− c|p + (3− t)|α+ c|p + (d′ − 4)cp + |lα− c|p.

Since c̃T needs to win all r voters in {vi}ri=1, we must have
||vi − c̃T ||p ≤ rd′ , by inequality (6), this implies t ≥ 1.

This proof is based on the covering by two balls problem
in Megiddo [1990]. While the original problem is under l2
norm, we generalize it to lp with p ∈ (1,∞).

A.6 Proof of Theorem 4 (l∞ norm)
First, it is easy to see that the problem is in NP. We now show
hardness by reduction from 3-SAT. The proof is in Rd space.

We set target candidate c1 = [0, 0, . . . , 0, 0] and ε =
1/2. We are given a 3-SAT instance with d − 1 variables
{X1, X2, . . . , Xd−1} and r clauses {E1, E2, . . . , Er}. For
each clause, we create 7 sets of voters and candidates that
each corresponds to a solution to the clause to be TRUE. For
example, for clause (Xi∨Xj∨Xk) to be TRUE, we can have

Xi = 1, Xj = 1, Xk = 1

Xi = 1, Xj = 1, Xk = −1

Xi = 1, Xj = −1, Xk = 1

Xi = 1, Xj = −1, Xk = −1

Xi = −1, Xj = 1, Xk = 1

Xi = −1, Xj = −1, Xk = 1

Xi = −1, Xj = −1, Xk = −1

where 1 represents TRUE and −1 represents FALSE. For
each such solution, we create a voter and a candidate where

v·,i = c·,i = 1 if Xi = 1, or v·,i = c·,i = −1 if
Xi = −1, i ∈ [d− 1]; c·,d = 1/2; 0 otherwise. The distance
between each voter and candidate created is 1/2. In total we
create 7r voters and candidates in this fashion. Next we create
a rival candidate c2 = [5, 5, . . . , 5, 5] and r dummy voters at
[5, 5, . . . , 5, 5]. Those dummy voters will always vote for c2
who then receives r votes. This means in order for c1 to win
the election, c1 needs to win at least r voters created from the
3-SAT clauses. Notice that currently no voter votes for c1.
RVPM will change c1 to c̃1 so that c̃1 wins at least r voters.

We next show finding a solution c̃1 to RVPM is equivalent
to finding a solution to 3-SAT.

Given a 3-SAT solution {X1, . . . , Xd−1}, we let c̃1,i =
1/2 if Xi = TRUE, or c̃1,i = −1/2 if Xi = FALSE,
i ∈ [d− 1]; c̃1,d = 0. c̃1 wins r voters and wins the elec-
tion.

Given a RVPM solution c̃1, since c̃1 wins the election, c̃1
needs to win at least r voters created from the 3-SAT clauses,
by having a distance of no more than 1/2 to those r voters.
Notice that c̃1 can only win over maximum 1 voter from each
clause. Due to the budget constraint, c̃1 has to have format
c̃1,i ∈ {−1/2, 1/2}, i ∈ [d − 1]. We let Xi = TRUE if
c̃1,i = 1/2, Xi = FALSE if c̃1,i = −1/2, i ∈ [d − 1], and
{X1, . . . , Xd−1} is the solution to 3-SAT.

A.7 Proof of Theorem 5
For two candidates with arbitrary scoring rules under con-
structive control, target candidate c1 wins the election iff c1
wins at least half of the voters. We claim that there exists a
point that can be computed in polynomial time which lets c1
win maximum number of voters possible within ε. The key
idea is to move c1,j as close to c2,j as possible for each issue
j ∈ [d], leaving minimum gaps. Given the voter set V , c1, c2
and ε, the algorithm is as below:

c̃1,j = sign(c2,j − c1,j) ·min(|c2,j − c1,j |, ε) + c1,j , j ∈ [d].
If c̃1 wins the election, return c̃1; else return NO.

Next we give a formal proof of the algorithm. Since un-
der l∞ norm only the relative distance between c1,j and c2,j ,
j ∈ [d] matters. Without loss of generality, we assume
c1 = [0, 0, . . . , 0], c2 = [a1, a2, . . . , ad]. Since the issues
are independent from one another, we permute the issues so
that 0 < |a1| ≤ |a2| ≤ . . . ≤ |ad| (for issues that c1
and c2 agrees on, i.e., aj = 0, we can simply omit them).
Given budget ε, we assume |ai| ≤ ε < |ai+1|. We claim
that c̃1 = [a1, . . . , ai, sign(ai+1)ε, . . . , sign(ad)ε] wins max-
imum number of voters possible within budget.

Let c̃′1 = [α1, α2, . . . , αd] be a point within ε from c1 that
wins maximum number of voters possible. For any voter
vr ∈ V that votes for c̃′1, assume max(vr, c2) = |vr,k − ak|.
To start with, we set c̃1 = c̃′1, then we have max(vr, c̃1) =
max(|vr,1 − α1|, . . . , |vr,d − αd|). Notice that since |vr,k −
ak| ≥ |vr,j − aj |, ∀j ∈ [d], and |aj | ≤ ε, ∀j ∈ [i], we can
set c̃1,j = aj for j ∈ [i] and this has no impact on c̃1 win-
ning voter vr. Now c̃1 = [a1, . . . , ai, αi+1, . . . , αd]. Next we
only need to discuss the values of c̃1,j for j ∈ {i+ 1, . . . , d}.
We show that |vr,k − ak| ≥ |vr,j − sign(aj)ε| for all



j ∈ {i+ 1, . . . , d}. Due to the budget constraint to c̃′1, we
must have −ε ≤ αj ≤ ε,∀j ∈ [d]. For ∀j ∈ {i + 1, . . . , d}
we have:

• if aj > 0:
– if vr,j ≥ ε ≥ αj , then |vr,k − ak| ≥ |vr,j − αj | =
vr,j − αj ≥ vr,j − ε = |vr,j − ε|;

– if ε ≥ vr,j ≥ αj or ε ≥ αj ≥ vr,j , then since
aj > ε ≥ vr,j , we have |vr,k − ak| ≥ |vr,j − aj | =
aj − vr,j > ε− vr,j = |vr,j − ε|.

• if aj < 0:
– if αj ≥ −ε ≥ vr,j , then |vr,k−ak| ≥ |vr,j−αj | =
αj − vr,j ≥ −ε− vr,j = |vr,j + ε|;

– if αj ≥ vr,j ≥ −ε or vr,j ≥ αj ≥ −ε, then since
vr,j ≥ −ε > aj , we have |vr,k−ak| ≥ |vr,j−aj | =
vr,j − aj > vr,j + ε = |vr,j + ε|.

This means c̃1 = [a1, . . . , ai, sign(ai+1)ε, . . . , sign(ad)ε]
wins voter vr. Since c̃′1 wins maximum number of voters
possible, c̃1 also wins maximum number of voters possible.
Next we only need to check whether c̃1 wins the election (i.e.,
wins at least half of the voters).

The computation of c̃1 takes O(d) time; checking whether
c̃1 wins the election takes O(md) time. The algorithm takes
O(md) time in total.

A.8 Proof of Theorem 7
We solve the problem by finding the set which contains a rep-
resentative solution point for all scenarios of (t1, . . . , tm) (de-
fined as in Theorem 6), which covers all the scenarios of c1
winning. Each scenario represents finding a c̃1 within bud-
get constraint that gets a score of at least f(tj) from voter
vj , j ∈ [m], and is to solve the below feasibility problem:

||c̃1 − c1||∞ ≤ ε (9a)

||c̃1 − vj ||∞ ≤ d
tj
j , j ∈ [m] (9b)

where dtjj is defined in the constructive control variant of
BVPM. There are in total m · |funiq| + 1 hypercubes in-
volved for all the scenarios. We hope to find the represen-
tative points of intersections for those m · |funiq| + 1 hyper-
cubes which then cover all the scenarios of c1 winning. As
discussed in Crama et al. [1995], the problem goes down
to box intersection problem for constant d. For a problem
that involves n boxes, it can be solved in time O(n log n)
for d ≤ 2 and O(nd−1) for d ≥ 3 [Imai and Asano, 1983;
Lee, 1983]. The resulting algorithm is exponential only in d.

A.9 Proof of Lemma 3
We denote Sc as the boundary of Bc, and Sj as the boundary
of both closed ball Bj and open ball B̊j , j ∈ [k].

As defined in Theorem 5 of Crama et al. [1995], given
{Bc, B1, . . . , Bk} in Rd, let P be a set of points in Rd where
for each F ⊆ {Bc, B1, . . . , Bk} with |F | ≤ d,

(i) if
⋂

j∈F Sj is connected, then P contains a point of⋂
j∈F Sj , and

(ii) if
⋂

j∈F Sj contains at most two points, then P contains⋂
j∈F Sj .

Assume the solution set P ′ 6= ∅. We chose x ∈ P ′ as a
representative solution. LetH = {j ∈ {1, . . . , k} | x ∈ B̊j},
F = {j ∈ {c, 1, . . . , k} | x ∈ Sj}. Let x be chosen so that
first |H| is as small as possible, then |F | is as large as pos-
sible. According to Lemma 5 in Crama et al. [1995], the in-
tersections of spheres are either connected or contain at most
two points. There are four cases to discuss:

Case 1:
⋂

j∈F Sj is connected, and |F | < d. By construc-
tion of P , there exists a point u ∈ P ∩ (

⋂
j∈F Sj). We next

claim that u ∈ Bc and for all j ∈ {1, . . . , k}\H,u /∈ B̊j .
Since x is a solution, we have {i1, . . . , ir}∩H = ∅, this also
implies u /∈ B̊j , j ∈ {i1, . . . , ir}. Since

⋂
j∈F Sj is con-

nected and both x, u ∈
⋂

j∈F Sj , there is a path from x to u
on

⋂
j∈F Sj . If the claim is not valid, then moving from x

to u we must encounter a first boundary of the ball Sj with
index j ∈ {c, 1, . . . , k}\F . Let v be the point that the path x
to u intersects with Sj . If j ∈ H , this contradicts the mini-
mality of H , since v is in fewer balls than x; if j /∈ H , this
contradicts the maximality of F , since v is on more spheres
than x.

Case 2:
⋂

j∈F Sj is connected, and |F | ≥ d. According to
Lemma 5 in Crama et al. [1995], there exists F ′, |F ′| < d,
such that

⋂
j∈F Sj =

⋂
j∈F ′ Sj . This goes to case 1.

Case 3:
⋂

j∈F Sj contains at most two points, |F | ≤ d. By
construction, P contains

⋂
j∈F Sj , and x ∈

⋂
j∈F Sj ⊆ P .

Case 4:
⋂

j∈F Sj contains at most two points, |F | > d.
We take F ′ ⊆ F, |F ′| = d. Since the intersections of d non-
coinciding spheres have at most two points, by construction
P contains

⋂
j∈F ′ Sj , and x ∈

⋂
j∈F Sj ⊆

⋂
j∈F ′ Sj ⊆ P .

The proof is modified based on Lemma 3 in Crama and
Ibaraki [1997], where it studies the avoid ball problem in
Rd for constant d and the feasibility area is bounded by a
d-dimensional hypercube.

A.10 Proof of Lemma 4
We claim that if ỹ ∈ Rd satisfy constraint (2a) and
∪dj=1Sj(ỹj) = [k], then ỹ is a solution to the feasibility prob-
lem. If the claim is not true, assume the l-th constraint of (2b)
is not satisfied for some l ∈ [k], meaning ||ỹ−al||∞ < bl, this
implies |ỹj − al,j | < bl, ∀j ∈ [d] and l 6= Sj(ỹj),∀j ∈ [d],
which contradicts ∪dj=1Sj(ỹj) = [k].

Given the above result, we next show for a solution ỹ, its
j-th dimension coordinate ỹj ∈ [−ε+ yj , ε+ yj ] can be rep-
resented by one of the points in Pj . Notice that for any i-th
constraint in (2b), i ∈ [k], its j-th dimension |ỹj − ai,j | < bi
depicts an open interval on R: −bi + ai,j < ỹj < bi + ai,j .
The j-th dimension of k constraints correspond to k
open intervals. Since the intervals are open, ỹj and its
nearest open interval endpoint ỹ′j ∈ [−ε+ yj , ε+ yj ] sat-
isfy Sj(ỹj) = Sj(ỹ

′
j). If there is no open interval end-

point within [−ε+ yj , ε+ yj ], then any ỹ′j that is within
[−ε+ yj , ε+ yj ] satisfies Sj(ỹj) = Sj(ỹ

′
j) (e.g., ỹ′j = yj).

This means ∪ji=1Si(ỹi) ∪ Sj(ỹ
′
j) ∪di=j+1 Si(ỹi) = [k] and

[ỹ1, . . . , ỹj−1, ỹ
′
j , ỹj+1, . . . , ỹd] satisfies constraint (2a), it

is a solution to the feasibility problem. Since Pj con-
tains all such ỹ′j ,∀j ∈ [d], if the problem is feasible then



P = {p ∈ Rd | pj ∈ Pj , j ∈ [d]} contains a solution.

B Algorithm for Destructive Control in
Binary Issues with a Constant Number of
Voters

For destructive control, we change the sign “≤” in con-
straint (1b) to “≥”. Similar to constructive control, given
an arbitrary scoring function f that has r unique values
(|funiq| = r), since f is non-increasing, we can partition the
domain of f by 1 = s1 < s2 < · · · < sr < sr+1 = n+ 1, so
that {f(k)}si+1−1

k=si
have the same value, i ∈ {1, 2, . . . , r}.

This means si is the highest ranking position that corresponds
to score f(si) and {f(si)}ri=1 contains all the unique values
of f .

Next we solve the problem for each (t1, . . . , tm) scenario
with tj ∈ {s1, . . . , sr},∀j ∈ [m]. For each voter vj , j ∈ [m],
we rank candidates ci (i ≥ 2) by their distances to voter vj
from closest to furthest, and use dtjj to denote the distance
between vj and the candidate ranked (tj − 1)-th closest to it.
Since the tie breaks in the adversary’s favor, as long as c1’s
distance to vj is at least dtjj , c1 will receive a score of no
more than f(tj) from vj . Notice that since the rankings of
ci (i ≥ 2) do not include c1, only dtjj for 2 ≤ tj ≤ n are
properly defined. For tj = s1 = 1, we let d1j = 0, since c1 is
guaranteed to get no more than the highest score f(1).

The correctness for the above arguments for destructive
control can be demonstrated by the below two lemmas similar
to constructive control.

Lemma 7. For destructive control, if a ranking position
(r1, r2, . . . , rm) is feasible for c1 under the budget constraint
and lets c1 lose the election, then for a ranking position
(r′1, r

′
2, . . . , r

′
m) that is feasible with r′j ≥ rj ,∀j ∈ [m], it

will also let c1 lose the election.

Proof. For each voter vj , j ∈ [m], we rank candidates
ci (i ≥ 2) by their distances to vj from closest to fur-
thest. Without loss of generality, we assume candidates
cn, cn−1, . . . , c2 are ranked from closest to furthest w.r.t. vj .
Then when c1 is inserted into this sequence and is ranked rj ,
the score each candidate receives from vj is as below:

cn ... cn−rj+2 c1 cn−rj+1 ... c2
f(1) ... f(rj − 1) f(rj) f(rj + 1) ... f(n)

If we move c1 from ranking position rj to r′j ,
r′j ≥ rj , since f is a non-increasing function, the
score c1 receives from vj will decrease from f(rj) to
f(r′j); the scores candidates cn, cn−1, . . . , cn−rj+2 and
cn−r′j+1, cn−r′j , . . . , c2 receive from vj will not change; for
candidates cn−rj+1, cn−rj , . . . , cn−r′j+2, since their rankings
will increase by 1, the scores they receive from vj will not
decrease. This means if we move c1 from ranking position
(r1, r2, . . . , rm) to (r′1, r

′
2, . . . , r

′
m), r′j ≥ rj ,∀j ∈ [m], the

total score c1 receives will not increase, while the total scores
other candidates receive will not decrease. Since c1 loses the

election with ranking position (r1, r2, . . . , rm), c1 will also
lose the election with ranking position (r′1, r

′
2, . . . , r

′
m).

Lemma 8. For destructive control, by enumerating all sce-
narios of c1 getting a ranking position lower than tj w.r.t.
voter vj for tj ∈ {s1, . . . , sr},∀j ∈ [m], we cover all the
possible scenarios of c1 losing.

Proof. Without loss of generality, we assume candidates
cn, cn−1, . . . , c2 are ranked from closest to furthest w.r.t.
voter vj . We next insert c1 into this sequence and assume
c1 receives a score of f(si) from vj , where i ∈ {1, . . . , r}.
After the insertion, the score each candidate receives from vj
is as below:

..., cn−si+2 ..., c1, ... cn−si+1+2, ..., cn−si+2+1

f(si−1) f(si) f(si+1)

Notice that whichever ranking position c1 takes among
si, si + 1, . . . , si+1 − 1, the final score each candidate re-
ceives from vj are the same, meaning these ranking positions
are equivalent. Since the solution set of getting a ranking po-
sition lower than si covers the solution set of getting a ranking
position lower than si +1, si +2, . . . , si+1−1, we only need
to consider si.

C Algorithm in Lemma 5

Algorithm 1 Feasibility problem with constant number of
constraints
Input: Feasibility problem parameters.
Output: A solution to the problem; or NO if not feasible.

1: Calculate S1 and P1

2: S ← S1, P ← P1

3: for j ∈ [2 : d] do
4: Calculate Sj and Pj

5: Find all pairs of sets S(p) ∈ S and Sj(pj) ∈ Sj , where
Sj(pj) * S(p).

6: Add S(p) ∪ Sj(pj) to S and [p, pj ] to P
7: if [k] ∈ S then
8: Expand its corresponding point p to d-dimension
9: return p

10: end if
11: Remove subsets in S and corresponding points in P
12: Update P so that all points have dimension j
13: end for
14: return NO

For simplicity, we first define set Sj = {Sj(pj) | pj ∈ Pj},
where Pj and Sj(pj) are defined in Lemma 4. Assume a point
p is j-dimensional, we let S(p) = ∪ji=1Si(pi). According
to Lemma 4, finding a solution to the feasibility problem is
equivalent to finding a point p ∈ Rd that satisfy constraint
(2a) and S(p) = [k].

In Line 1 and 2, we initialize the sets S and P with S1
and P1, and later use them to store the results for the [1 : j]
dimension. In the main loop, for each dimension j ∈ [2 : d],
we first calculate sets Sj and Pj , and then find all pairs of sets



S(p) ∈ S and Sj(pj) ∈ Sj that satisfy Sj(pj) * S(p). This
means S(p) ⊂ S([p, pj ]). We add all such sets S([p, pj ])
to S and points [p, pj ] to P . The terminate condition is if
[k] ∈ S, then for the j-dimensional point p ∈ P that has
S(p) = [k], S([p, yj+1, . . . , yd]) = [k] and [p, yj+1, . . . , yd]
satisfies constraint (2a). [p, yj+1, . . . , yd] is a solution to the
feasibility problem.

In Line 11 we remove all subsets in S (as well as
the corresponding points in P ) and keep the sets in S
pairwise incomparable. This improves our algorithm ef-
ficiency and has no impact on us finding a solution:
if a solution ỹ exists with ∪di=1Si(yi) = [k], and we
have y′j ∈ [−ε+ yj , ε+ yj ] with Sj(yj) ⊆ Sj(y

′
j), we

then have ∪j−1i=1Si(yi) ∪ Sj(y
′
j) ∪di=j+1 Si(yi) = [k], mean-

ing [y1, . . . , yj−1, y
′
j , yj+1, . . . , yd] is also a solution.

In Line 12, we append yj to all the (j − 1)-dimensional
points in P so that all points are j-dimensional.

Since k is constant, the sizes of S and Sj as well as their el-
ements are all constants. The algorithm is linear and of com-
plexity O(d). We can also determine in linear time if none of
the representative points satisfy the feasibility condition, and
return NO in that case.
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